

JPA Consulting
www.jpacsoft.com

Contacts
Technical support: support@jpacsoft.com

Sales enquires: sales@jpacsoft.com

JPA-SCPI Parser V1.3.1 User Manual, release 1
© JPA Consulting Ltd., 2004

http://www.jpacsoft.com/
mailto:support@jpacsoft.com
mailto:sales@jpacsoft.com

 Contents

1 Licence Agreement ... 9
2 Introduction ... 15

2.1 What is JPA-SCPI Parser?.. 15
2.2 The SCPI Standard ... 15
2.3 Using JPA-SCPI Parser .. 16
2.4 Aims of JPA-SCPI Parser.. 16
2.5 Contacting Us.. 16

3 What’s Included? .. 17
3.1 Documentation .. 17
3.2 Source Code ... 17
3.3 Important Note – Text Formats ... 17
3.4 Organization of Supplied Files .. 17
3.5 Notes on the Source Code.. 18

4 Overview of JPA-SCPI Parser .. 19
4.1 SCPI Parser .. 19
4.2 Command Specifications... 19

5 Before You Start.. 21
5.1 SCPI Standard .. 21
5.2 Where Now?.. 21

6 Choose your SCPI Instrument Class(es) .. 23
6.1 SCPI Instrument Classes Introduced .. 23

7 Define Your Command Set... 29
7.1 Command Notation ... 29
7.2 Base Command Set .. 30
7.3 SCPI Instrument Class Commands... 31
7.4 Adding Your Own Commands... 32

8 An Overview of the Required Coding.. 33
8.1 Command Specifications... 33
8.2 Integrating into Your Own Code.. 36

9 Starting Your Implementation.. 37
9.1 Select Your Templates .. 37
9.2 Using a Single Template ... 37
9.3 Using Two or More Templates .. 38
9.4 Tidying Up ... 41

10 Specify Maximum Number of Parameters .. 43
10.1 Set Maximum Parameters in cmds.h .. 43

10.2 Modify cmds.c for Maximum Parameters .. 43
11 Specify Supported Units .. 45

11.1 Specify Base Units in cmds.h.. 45
11.2 Specify Supported Units in cmds.c.. 46

12 Optional Support Features... 51
12.1 Introduction to the Optional Support Features .. 51
12.2 Enabling/Disabling the Features You Need .. 51
12.3 Numeric Suffix Support Settings ... 52
12.4 Channel List Support Settings... 53
12.5 Option to Support More than 255 Characters in an Input Command Line 53
12.6 Option to Support More than 255 Commands... 54

13 Specify Command Keywords... 55
13.1 Create a Row in Command Specs – Part 1: Command Keywords 56

14 Specify Command Parameters .. 57
14.1 Commands without Parameters .. 57
14.2 Commands with Parameters ... 57
14.3 Required and Optional Parameters... 58
14.4 What Type of Parameter? ... 59
14.5 Specifying Parameter Type in Code.. 63
14.6 Specifying a Numeric Value Parameter .. 63
14.7 Specifying a Boolean Parameter... 67
14.8 Specifying a Character Data Parameter.. 68
14.9 Specifying a String Parameter... 70
14.10 Specifying an Unquoted String Parameter .. 70
14.11 Specifying a Numeric List Parameter .. 71
14.12 Specifying a Channel List Parameter .. 73
14.13 Specifying an Expression Parameter .. 75
14.14 Specifying a Character Data Parameter with an Alternative Parameter Type .. 75

15 Remove Unused Declarations ... 79
16 Integrate into Your Source Code ... 81

16.1 Compiler Requirements... 81
16.2 Integration Overview ... 81
16.3 Copy Command Line from Input Buffer... 82
16.4 Parsing Loop ... 82
16.5 Command Handler Functions.. 86

17 Advanced Topics .. 97
17.1 How can I Support Nested Optional Parameters? .. 97
17.2 How do I Support the UNIT Subsystem? .. 97
17.3 How can I allow entry of either a Numeric Value or an Expression Parameter?... 99
17.4 Commands that allow Many Parameters .. 100

Appendix A – An Introduction to SCPI ... 105
A.1 Benefits of SCPI .. 105
A.2 Background to SCPI.. 105

A.3 Command Structure .. 105
Appendix B – JPA-Parser Access Functions .. 115

B.1 SCPI_Parse() .. 115
B.2 SCPI_ParamType() ... 117
B.3 SCPI_ParamUnits()... 118
B.4 SCPI_ParamToCharDataItem() .. 119
B.5 SCPI_ParamToBOOL()... 120
B.6 SCPI_ParamToUnsignedInt().. 121
B.7 SCPI_ParamToInt()... 122
B.8 SCPI_ParamToUnsignedLong().. 123
B.9 SCPI_ParamToLong()... 124
B.10 SCPI_ParamToDouble() ... 125
B.11 SCPI_ParamToString() ... 126
B.12 SCPI_GetNumListEntry() .. 127
B.13 SCPI_GetChanListEntry() ... 128

Appendix C – SCPI Instrument Class Templates .. 129
C.1 DC Voltmeter... 130
C.2 AC RMS Voltmeter .. 131
C.3 DC Ammeter.. 132
C.4 AC RMS Ammeter... 133
C.5 Ohmmeter ... 134
C.6 4-wire Ohmmeter... 135
C.7 Power Supply .. 136
C.8 Digitizer ... 137
C.9 Signal Switcher.. 139
C.10 RF and Microwave Source .. 140
C.11 SCPI Base Class... 141

Appendix D – Sample Command Specifications... 143
Appendix E – Upgrading from a Previous Version ... 145

E.1 Upgrading from V1.3.0 .. 145
E.2 Upgrading from Older Versions... 146
E.3 Revision History of Previous Versions .. 146

1 Licence Agreement
1.1 This document is a legally binding Licence Agreement (the "Agreement") made

between "the Licensee" and the “Manufacturer”
1.2 By purchasing or otherwise using this “Product”, including computer source code,

computer software, associated media, any printed materials, and any "online" or
electronic documentation the Licensee agrees to be bound by the terms of this
Agreement

2. GENERAL TERMS

2.1 Definitions: the following expressions shall have the following meanings:
•
•

•
•

•
•

•

•
•
•

•

•

"Manufacturer" – “JPA Consulting”
"JPA Consulting" – JPA Consulting Limited, whose registered office is at Suite 2,
Garrad House, 2 – 6 Homesdale Road, Bromley, Kent, BR2 9LZ, UK
"Licensee" - the person, firm or company that has placed an Order
"Product" – JPA-SCPI Parser provided by JPA Consulting, including software in
which JPA Consulting has sub-licensing rights, in executable, machine readable,
object, printed or interpreted form, including any documentation, modifications,
improvements, or updates supplied to the Licensee under any Order
"Licence Term" – duration of Agreement subject always to Clause 6 hereof
"Proprietary Information" - all intellectual property rights including but not limited
thereto all copyrights, design rights (registered and unregistered), patents,
trademarks, designs, formula, code and other similar data relating to the Product
"Order" - any purchase order issued by the Licensee for the Product from JPA
Consulting
"Quotation" - any quotation for the supply of the Product issued by JPA Consulting
"Site" - the location for which the Product may be used identified in the Order
“Computer Program” - any form of set of instructions that is able to run on any
form of microprocessor, including a micro-controller within a piece of electronic
equipment or any form of personal computer
"Specification" - the written specification of the Product maintained during
development and contained in documentation
"Support Agreement" - the Software Maintenance and Technical Support facility
provided by JPA Consulting

2.2 Incorporation of Terms: these Terms shall apply to the Product(s) supplied by JPA
Consulting under any Order placed by the Licensee
2.2.1 In the event of any ambiguity to any provision of this Agreement or ruling by a

court of competent jurisdiction to be illegal, invalid or unenforceable, the
remaining provisions shall remain in full force and effect

3. GRANT OF LICENSE

3.1 The Manufacturer hereby grants, and Licensee hereby accepts, subject to the terms
and conditions of this Agreement a non-exclusive, non-transferable and non-
assignable license to use the Product

1 LICENCE AGREEMENT 9

3.2 The Product is protected by copyright laws and international copyright treaties, as well
as other intellectual property laws and treaties

3.3 The Product is licensed, not sold - any rights not explicitly granted under this
Agreement are hereby reserved

3.4 The Licensee may not resell, rent, lease, or distribute any part of the Product, except
the source code component of the Product, and only then as a compiled component of
a Computer Program

3.5 The Licensee may only incorporate the Product into applications and equipment
produced or manufactured by Licensee’s organisation and sold under the Licensee’s
organisation name

3.6 The Licensee is entitled to make sufficient copies of the Product or parts of the Product
for use by the software developers of Licensee’s organisation, subject to the terms and
conditions of this Agreement

3.7 If the Licensee acting as consultant wishes to use the Product in development of
applications or equipment for more than one organisation then the Licensee requires a
multi-brand licence to provide the Product to those organisations

3.8 Any source code component of the Product used as a compiled component of a
Computer Program that is distributed or accessible outside the Licensee's organisation
(including use from the Internet) must be protected to the extent that it cannot be easily
extracted or decompiled

3.9 The application the Licensee distributes shall not be a software development tool
intended for distribution to other software developers or programmers

3.10 The Licensee may not resell, rent, lease, or distribute products created from the
Product in any form that could compete with the Manufacturer

3.11 Failure to comply with and adhere to the terms and conditions of this Licence could
subject the Licensee to legal action by JPA Consulting and/or the termination of this
licence

4. LEGAL JURISDICTION

4.1 This contract is governed by the law of England & Wales
4.2 The Licensee acknowledges having read this licence and having understood all its

terms, to agree to respect them in whole

5. COPYRIGHT

5.1 The Manufacturers' Product including source code and all documentation in whatever
physical form is copyrighted and contains proprietary information

5.2 The Licensee shall not distribute or reveal any parts of the Product to anyone other
than the software developers of Licensee's organisation

5.3 The Licensee could be legally responsible for any infringement of intellectual property
rights that caused or encouraged by Licensee's failure to abide by the terms of this
Agreement

5.4 The Manufacturer reserves all rights not specifically granted to the Licensee

10 JPA-SCPI PARSER – USER MANUAL

6. MODIFICATIONS

6.1 Modifications: the Manufacturer will provide the Licensee with error corrections, bug
fixes, patches, and or updates to the Product licensed hereunder to the extent
available in accordance with the Manufacturer’s release schedule for a period of one
(1) year from the date of despatch

6.2 Updates: if this copy of the Product is an upgrade from an earlier version of the
Product, it is provided on a licence exchange basis
6.2.1 The Licensee agrees by installation and use of this copy of the Product to:

(i) Voluntarily terminate any earlier end-user licence, and
(ii) To not continue to use the earlier version of the Product nor transfer it to
another

6.3 Title: all such error corrections, bug fixes, patches, updates, or other modifications
shall remain the sole property of the Manufacturer

7. LICENCE TERM

7.1 This Agreement provides a long term licence of 25 years unless a quotation has
specifically stated a shorter period and such shorter period has been specifically
ordered by the Licensee

8. WARRANTY & RISKS

8.1 Although the Manufacturer has thoroughly tested the Product and reviewed the
documentation, the Manufacturer cannot guarantee that the Product will suit the
Licensees’ needs, nor that it will function correctly in every hardware or software
environment, nor that its operation will be uninterrupted or infallible

8.2 Efforts have been made to assure that all parts of the Product, including the source
code, are correct, reliable, and technically accurate, however the Product is licensed to
the Licensee as is and without warranties as to performance of merchantability, fitness
for a particular purpose or use, or any other warranties whether expressed or implied.
Licensee's organisation and all users of the Product assume all risks when using it

8.3 The Manufacturer, distributors, and resellers of the Product shall not be liable for any
consequential, incidental, punitive or special damages arising out of the use of or
inability to use the Product or the provision of or failure to provide support services,
even if advised of the possibility of such damages

8.4 In any case, the entire liability under any provision of this agreement shall be limited to
the amount actually paid by the Licensee for the Product

8.5 Should the Licensee discover a material defect on the media upon which the Product
is furnished (not applicable if the program is downloaded from a server or if copied
from other media) within ninety (90) days following the date of purchase, the media will
be replaced free of charge

8.6 Except insofar as it has been stated in paragraph one (above), the Manufacturer
grants no guarantee and acknowledges no express or tacit guarantee regarding the
Product, its quality, its description, its retail value, or its appropriateness for any
specific function

1 LICENCE AGREEMENT 11

8.7 In no case will the Manufacturer assume any responsibility for any direct or indirect
damages, losses, loss of revenues, or for any loss of recorded data concerning the
use or the unsuitability of the Product

8.8 No distributor, dealer, agent, or intermediary is authorised to modify or otherwise
amend this declaration of guarantee and of limited liability

9. HIGH RISK ACTIVITIES

9.1 The Product is not fault-tolerant and is not designed, or intended for use or resale as
on-line control equipment in hazardous environments requiring fail-safe performance,
in which the failure of the Product could lead directly to death, personal injury, or
severe physical or environmental damage ("High Risk Activities")

9.2 "High Risk Activities" could include but are not limited exclusively to the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic control, direct
life support machines, or weapons systems

9.3 The Manufacturer and its suppliers specifically disclaim any express or implied
warranty of fitness for High Risk Activities

10. CONFIDENTIALITY

10.1 Acknowledgement: the Licensee hereby acknowledges and agrees that the Product,
including source code and documentation in whatever physical form constitutes and
contains valuable proprietary products and trade secrets of the Manufacturer and/or its
suppliers, embodying substantial creative efforts and confidential information, ideas,
and expressions. Accordingly, Licensee agrees to treat (and take precautions to
ensure that its employees treat) all components of the Product as confidential in
accordance with the confidentiality requirements and conditions set forth below:
10.1.1 Each party agrees to keep confidential all confidential information disclosed to

it by the other party in accordance herewith
10.1.2 Each party agrees to protect the confidentiality thereof in the same manner it

protects the confidentiality of similar information and data of its own (at all times
exercising at least a reasonable degree of care in the protection of confidential
information)
Provided, however, that neither party shall have any such obligation with
respect to use of disclosure to others not parties to this Agreement of such
confidential information as can be established to have:
(a) Been known publicly
(b) Been known generally in the industry before communication by the
disclosing party to the recipient
(c) Become know publicly, without fault on the part of the recipient, subsequent
to disclosure by the disclosing party
(d) Been known otherwise by the recipient before communication by the
disclosing party; or
(e) Been received by the recipient without any obligation of confidentiality from
a source (other than the disclosing party) lawfully having possession of such
information

12 JPA-SCPI PARSER – USER MANUAL

10.2 Injunctive Relief: the Licensee acknowledges that the unauthorised use, transfer, or
disclosure of any part of the Product or copies thereof will:

(i) Diminish substantially the value to the Manufacturer of the trade secrets and
other proprietary interests that are the subject of this Agreement
(ii) Render the Manufacturer’s remedy at law for such unauthorised use,
disclosure, or transfer inadequate; and
(iii) Cause irreparable injury in a short time period

If the Licensee breaches any of its obligations with respect to the use or confidentiality
of the Product, the Manufacturer shall be entitled to equitable relief to protect its
interests therein, including, but not limited to, preliminary and permanent injunctive
relief

10.3 Survival: Licensee’s obligations under this Article will survive the termination of this
Agreement or of any licence granted under this Agreement for whatever reason

11. TERMINATION

11.1 Without prejudice to any other rights, JPA Consulting may terminate this agreement if
the Licensee fails to comply with its terms and conditions

11.2 In any such event the Licensee must permanently uninstall all copies of the Product

1 LICENCE AGREEMENT 13

2 Introduction

2.1 What is JPA-SCPI Parser?
JPA-SCPI Parser gives your in-house software development team the tools to quickly and
easily create SCPI command parsers for your programmable instruments. No longer do you
need to employ an outside consultancy house, or spend a large amount of time creating a
SCPI parser from scratch.
Written in ANSI/ISO C and designed to be efficient in use of ROM and RAM, the JPA-SCPI
Parser library of source code is suitable for use on almost any embedded
processor/hardware platform. Comprehensive instructions in this manual give a step-by-step
guide to creating all types of command syntax. In addition, source code templates are
provided to get you going even faster.
JPA-SCPI Parser supports all the common requirements of any programmable instrument.
However, if you need to expand JPA-SCPI Parser in any way for your own needs, then you
can. To assist you the source code is fully commented, and a separate Design Notes
document is also supplied, describing the design of the functions and the structures used.

2.2 The SCPI Standard
SCPI is the standard of choice for defining command sets of programmable instruments.
Supported by all the major manufacturers, SCPI provides customers with faster and cheaper
installation, development and support by giving their technicians and programmers a
consistent command language across all different types of programmable instrument.
By making your instrumentation SCPI-compatible, you could gain both from increased sales
and also reduced support costs, since many customers will already be familiar with SCPI
and require less basic technical support.

2.2.1 A Note on SCPI Compliance
When implementing your command interface for your instrument there are two approaches:

• Full SCPI compliancy

• SCPI “look and feel” commands
Full SCPI compliancy requires you to follow the standards set out in the SCPI Standard
documentation. JPA-SCPI Parser handles much of this for you. In addition, the standard
specifies other requirements you will need to meet in order to claim SCPI compliancy, such
as what certain commands should do, what commands to include for certain instrument
classes, and user documentation requirements. JPA-SCPI Parser includes 10 templates for
designing command sets for the most popular SCPI instrument classes. A base template is
also included that contains all the commands required by any instrument claiming SCPI
compliancy.
Often, full SCPI compliancy is not required. Instead, by giving the user the “look and feel” of
SCPI, the user will be immediately at home with their new piece of equipment. This
approach is extremely common amongst instrument manufacturers, and JPA-SCPI Parser
can be used for this too. For instance, you may wish to leave out some of the more obscure
commands defined in the SCPI Standard. You may also decide to add command keywords

2 INTRODUCTION 15

that better suit your equipment. Whatever you choose you can implement it with JPA-SCPI
Parser.

If SCPI compliance is a required goal then you must read the relevant sections of the SCPI
Standard document. SCPI compliancy not only requires a parser able to interpret SCPI-style
commands, it also requires other standards to be met such as the types of commands included
and the responses to commands returned. This information is included in the SCPI Standard
document, available free-of-charge by download (see “5.1 SCPI Standard”).

2.3 Using JPA-SCPI Parser
JPA-SCPI Parser allows your own software development team to concentrate on the
specifics of your instrument without having to spend valuable time implementing a SCPI
command parser.
A simple-to-use pair of files cmds.c and cmds.h is used to specify your command set and
templates of these files are provided to speed up your development. Access Functions allow
your code to use JPA-SCPI Parser easily. Full documentation provided in this manual give
you all the information you require to get your instrument “talking SCPI today”.

2.4 Aims of JPA-SCPI Parser
While developing JPA-SCPI Parser, we always had these aims in mind, and we believe we
have satisfied them:

• Support all the common requirements of SCPI-compatible instruments

• Run on almost any processor/hardware platform:
o Written in ANSI/ISO C
o Minimal ROM and, particularly, RAM requirements

• Fast and easy to deploy

2.5 Contacting Us
For technical support, please email us at: support@jpacsoft.com, or visit our website:
http://www.jpacsoft.com where a technical support request can be submitted.
We are always glad to hear from our customers with their experiences of JPA-SCPI Parser,
whether good or bad, and how they would like to see JPA-SCPI Parser improved or
expanded. Please contact us at: feedback@jpacsoft.com.

16 JPA-SCPI PARSER – USER MANUAL

mailto:support@jpacsoft.com
http://www.jpacsoft.com/
mailto:feedback@jpacsoft.com

 WHAT’S INCLUDED? 17

3 What’s Included?

3.1 Documentation
• Readme.txt – Release notes for this version

• User Manual – this document

• Design Notes – description of the JPA-SCPI Parser design and structure

3.2 Source Code
• JPA-SCPI Parser modules – scpi.c and scpi.h

• Sample SCPI command set – cmds.c and cmds.h

• 10 x SCPI instrument class templates

• SCPI base class template

3.3 Important Note – Text Formats
Different types of computer terminate lines of ASCII text in different ways:

• PCs running Windows or DOS use a Carriage Return & Linefeed combination

• Unix-based computers (including PCs running Linux) use a Linefeed

• Macintoshes use a Carriage Return
We therefore supply 3 variants of each piece of source code. Each variant is stored in a
sub-folder to identify it, one of:

• pc
• mac
• unix

When you are accessing the source code it will save you time if you select the files in the
sub-folder most appropriate to your computer.
Apart from these line-termination differences, the source code files are identical across the 3
variants.

3.4 Organization of Supplied Files
The files supplied are organized in a hierarchy of folders (also known as directories).
The folder structure is shown here:

3

readme.txt contains the latest release notes relating to this version of JPA-SCPI Parser.
The docs folder contains JPA-SCPI Parser documentation: manual.pdf is this User Manual.
desnotes.pdf is the Design Notes document.
The code folder contains all the source code supplied. Immediately beneath this are 3
folders: pc, mac and unix. These folders contain the source code files in the 3 text formats,
as discussed on page 17. Wherever you see folder {format} in this manual, substitute pc,
mac or unix, according to which text file format you require for your development system.
Under folder {format}, is folder parser, containing the scpi.c and scpi.h modules that make
up the parser code itself. Also under {format} is folder sample. This contains sample code
illustrating some of the command specifications you may require in your own code.
The last folder under {format} is template. This folder contains the 10 SCPI Instrument
Class templates, and the SCPI Base Class template. Each template has its own folder. The
names of the template folders are given in Appendix C.

3.5 Notes on the Source Code
All the source code files supplied are intended for reading with a tab spacing of 2. Use this
tab spacing when viewing or editing the files. This is particularly important while you are
viewing/editing any of the cmds.c files. cmds.c is structured as a series of tables. Using the
correct tab spacing for this file will mean that columns of the tables line up correctly. This
makes understanding the code a lot easier.

18 JPA-SCPI PARSER – USER MANUAL

 OVERVIEW OF JPA-SCPI PARSER 19

4 Overview of JPA-SCPI Parser
The JPA-SCPI Parser source code is divided into two parts:

• The SCPI parser itself

• The command specifications

4.1 SCPI Parser
The actual SCPI parser is contained within the scpi.c and scpi.h files. These comprise the
functions, structures, variables and constants used to parse the SCPI commands of your
instrument.
You will not normally need to modify the source code in the scpi.c and scpi.h modules, apart
from any minor changes that might be required specific to your C compiler.
The source code includes extensive comments, including descriptions of every parameter
and return value for every function. Documentation on the code’s structure and design are
also given in the Design Notes document.
If you decide that you do need to modify the scpi.c and scpi.h modules in order to meet your
requirements, then this is fine. Of course, we are unable to provide support for any non-
standard parts of JPA-SCPI Parser.

4.2 Command Specifications
The command specifications define the set of SCPI commands that your instrument
supports. The specifications are contained within cmds.c and cmds.h. It is these files that
you will be modifying in order to specify your command set.
Within the command specifications are defined the command keywords, the number and
types of parameters accepted by each command, and various attributes of the parameters,
such as allowed types of units and default values.
Templates are provided for 10 of the most popular types of SCPI instrument. These provide
a base set of command specifications for your instrument. Whether you decide to use one or
more of the templates or start your command specifications from scratch, this manual
describes how to implement the types of SCPI command you may require.
JPA-SCPI Parser uses constant C structures and arrays to hold the command
specifications. By doing this, no initialization function is required, simplifying the use of JPA-
SCPI Parser. In addition, RAM space requirements are kept to a minimum, which is often a
significant consideration when coding for some embedded platforms.

4

 BEFORE YOU START 21

5 Before You Start

5.1 SCPI Standard
If you are aiming for SCPI compliancy then you will need a copy of the current SCPI
Standard. Even if you only intend to provide SCPI look-and-feel you will find it useful to have
a copy of the SCPI Standard to hand. At the time of writing, the standard is available free-of-
charge by download from http://www.scpiconsortium.org.
The SCPI Standard includes information on all the most common SCPI commands your
instrument may require. It also includes information on SCPI Instrument Classes that will be
valuable during the initial stages of your SCPI implementation.

5.1.1 IEEE488.2 Standard
The SCPI Standard bases some of its design on the IEEE488.2 Standard. Much of the
IEEE488.2 Standard describes low-level specifications such as the representation of
numbers. JPA-SCPI Parser deals with these issues itself and so you probably will not need
to know the details.

In addition, SCPI includes some IEEE488.2 Common Commands such as *RST and *ESE.
If you wish to implement full SCPI compliancy, you will need to support these and react to
the commands in the ways required by IEEE488.2. If this is the case, then you will need a
copy of the IEEE488.2 Standard. At the time of writing, the IEEE488.2 standard is available
for download or in printed format, both at a cost, from http://www.ansi.org.

5.2 Where Now?
If you are unfamiliar with SCPI, or you’d like to refresh your memory, please spend a few
minutes reading Appendix A.
Once you are up-to-speed with SCPI just turn the page and continue reading...

5

http://www.scpiconsortium.org/
http://www.ansi.org/

 CHOOSE YOUR SCPI INSTRUMENT CLASS(ES) 23

6 Choose your SCPI Instrument Class(es)
The SCPI Standard includes definitions of 13 SCPI Instrument Classes. These classes
correspond to different types of instruments including DC Voltmeters, Ohmmeters, power
supplies, and RF sources.
Each class specifies a minimum set of commands that instruments compliant to the
Instrument Class must support. The aim is to give instruments of the same type a common
set of commands and responses, even if the instruments are made by different
manufacturers.
You need to decide which SCPI Instrument Class(es), if any, that you want your instrument
to belong to. For instance, an instrument such as a DMM (Digital Multimeter) may belong to
the Voltmeter (AC & DC), the Ohmmeter (2 and 4-wire), and the Ammeter (AC & DC)
Instrument Classes. On the other-hand, a programmable switch may only belong to the
Signal Switcher Instrument Class. Other types of instrument may not belong to any of the
SCPI Instrument Classes.

SCPI Compliance Needs
An instrument does not need to comply with any SCPI Instrument Class in order to be
SCPI-compliant. However, if you want your instrument to comply with a particular SCPI
Instrument Class (or Classes), it must support all the commands required by that
Instrument Class.

Even if you do not need or want to claim compliance to any SCPI Instrument Class, it is a
useful starting point to select which Instrument Classes embody the main functionality of
your instrument. This will give you a head start in deciding what commands you need to
implement. You may also be able to make use of the SCPI Instrument Class templates
supplied with JPA-SCPI Parser, even if you do not need all the functionality of the
Instrument Classes.

6.1 SCPI Instrument Classes Introduced
This section describes 10 of the most common SCPI Instrument Classes. A SCPI Instrument
Class template is supplied for each of these. Each template includes the commands
required for compliance with the Instrument Class.
Those SCPI Instrument Classes are:

• DC Voltmeter
• AC RMS Voltmeter
• Ohmmeter
• 4-wire Ohmmeter
• DC Ammeter
• AC RMS Ammeter
• Power Supply
• Digitizer (e.g. oscilloscope)
• Signal Switcher (e.g. programmable switch)
• RF and Microwave Source

In addition there are 3 other SCPI Instrument Classes defined in the SCPI Standard that are
not described here: Chassis Dynamometer, Emissions Cell, and Emissions Bench. If you

6

think your instrument may comply with any of these Instrument Classes, refer to the SCPI
Standard for more information and for the commands supported by those classes.
Read the brief descriptions of the SCPI Instrument Classes below. Refer to the SCPI
Standard for more information if you wish. Take note of any Instrument Classes that you
want to comply with or will be useful for your instrument.

6.1.1 DC Voltmeter SCPI Instrument Class
A DC Voltmeter is defined by the SCPI Standard as an instrument that measures the
average voltage level across its inputs at a point in time.
Command subsystems supported by this SCPI Instrument Class include:

SENSe Selects measuring function, range and resolution
INITiate Initiates the taking of measurements
FETCh? Retrieves the measurements taken by INITiate
READ? Performs the combined action of INITiate and FETCh? sequence
MEASure? Performs the combined action of SENSe and READ? sequence
TRIGger Configures trigger conditions for initiating the taking of measurements

Wherever the function of a DC Voltmeter Instrument is used in a SCPI command, it uses the
keywords: VOLTage[:DC]
For a full list of the commands supported by the template for this SCPI Instrument Class,
see Appendix C.
Note: An instrument wishing to comply with the DC Voltmeter SCPI Instrument Class must
support the SCPI command SYSTem:CAPability? and return an instrument specifier that
includes DCVOLTMETER (see “7.3.4 Do I Need the Command “SYSTem:CAPability?” for
more information).

6.1.2 AC RMS Voltmeter SCPI Instrument Class
An AC RMS Voltmeter is defined by the SCPI Standard as an instrument that measures the
root mean square of the voltage level across its inputs at a point in time.
Command subsystems supported by this SCPI Instrument Class include:

SENSe Selects measuring function, range and resolution
INITiate Initiates the taking of measurements
FETCh? Retrieves the measurements taken by INITiate
READ? Performs the combined action of INITiate and FETCh? sequence
MEASure? Performs the combined action of SENSe and READ? sequence
TRIGger Configures trigger conditions for initiating the taking of measurements

Wherever the function of an AC RMS Voltmeter Instrument is used in a SCPI command, it
always uses the keywords: VOLTage:AC
For a full list of the commands supported by the template for this SCPI Instrument Class,
see Appendix C.
Note: An instrument wishing to comply with the AC RMS Voltmeter SCPI Instrument Class
must support the SCPI command SYSTem:CAPability? and return an instrument
specifier that includes ACVOLTMETER (see “7.3.4 Do I Need the Command
“SYSTem:CAPability?” for more information).

24 JPA-SCPI PARSER – USER MANUAL

6.1.3 Ohmmeter SCPI Instrument Class
An Ohmmeter is defined by the SCPI Standard as an instrument that measures the
resistance across its input terminals at a point in time.
Command subsystems supported by this SCPI Instrument Class include:

SENSe Selects measuring function, range and resolution
INITiate Initiates the taking of measurements
FETCh? Retrieves the measurements taken by INITiate
READ? Performs the combined action of INITiate and FETCh? sequence
MEASure? Performs the combined action of SENSe and READ? sequence
TRIGger Configures trigger conditions for initiating the taking of measurements

Wherever the function of an Ohmmeter Instrument is used in a SCPI command, it always
uses the keyword: RESistance
For a full list of the commands supported by the template for this SCPI Instrument Class,
see Appendix C.
Note: An instrument wishing to comply to the Ohmmeter SCPI Instrument Class must
support the SCPI command SYSTem:CAPability? and return an instrument specifier that
includes OHMMETER (see “7.3.4 Do I Need the Command “SYSTem:CAPability?” for more
information).

6.1.4 4-wire Ohmmeter SCPI Instrument Class
A 4-wire Ohmmeter is defined by the SCPI Standard as an instrument that measures the
resistance across two of its input terminals with the assistance of 2 additional wires, at a
point in time.
Command subsystems supported by this SCPI Instrument Class include:

SENSe Selects measuring function, range and resolution
INITiate Initiates the taking of measurements
FETCh? Retrieves the measurements taken by INITiate
READ? Performs the combined action of INITiate and FETCh? sequence
MEASure? Performs the combined action of SENSe and READ? sequence
TRIGger Configures trigger conditions for initiating the taking of measurements

Wherever the function of a 4-wire Ohmmeter Instrument is used in a SCPI command, it
always uses the keyword: FRESistance
For a full list of the commands supported by the template for this SCPI Instrument Class,
see Appendix C.
Note: An instrument wishing to comply to the 4-wire Ohmmeter SCPI Instrument Class must
support the SCPI command SYSTem:CAPability? and return an instrument specifier that
includes FOHMMETER (see “7.3.4 Do I Need the Command “SYSTem:CAPability?” for more
information).

6.1.5 DC Ammeter SCPI Instrument Class
A DC Ammeter is defined by the SCPI Standard as an instrument that measures the
average current through its terminals at a point in time.

6 CHOOSE YOUR SCPI INSTRUMENT CLASS(ES) 25

Command subsystems supported by this SCPI Instrument Class include:

SENSe Selects measuring function, range and resolution
INITiate Initiates the taking of measurements
FETCh? Retrieves the measurements taken by INITiate
READ? Performs the combined action of INITiate and FETCh? sequence
MEASure? Performs the combined action of SENSe and READ? sequence
TRIGger Configures trigger conditions for initiating the taking of measurements

Wherever the function of a DC Ammeter Instrument is used in a SCPI command, it always
uses the keyword: CURRent[:DC]
For a full list of the commands supported by the template for this SCPI Instrument Class,
see Appendix C.
Note: An instrument wishing to comply to the DC Ammeter SCPI Instrument Class must
support the SCPI command SYSTem:CAPability? and return an instrument specifier that
includes DCAMMETER (see “7.3.4 Do I Need the Command “SYSTem:CAPability?” for more
information).

6.1.6 AC RMS Ammeter SCPI Instrument Class
An AC RMS Ammeter is defined by the SCPI Standard as an instrument that measures the
root mean square of the current through its terminals at a point in time.
Command subsystems supported by this SCPI Instrument Class include:

SENSe Selects measuring function, range and resolution
INITiate Initiates the taking of measurements
FETCh? Retrieves the measurements taken by INITiate
READ? Performs the combined action of INITiate and FETCh? sequence
MEASure? Performs the combined action of SENSe and READ? sequence
TRIGger Configures trigger conditions for initiating the taking of measurements

Wherever the function of an AC RMS Ammeter Instrument is used in a SCPI command, it
always uses the keyword: CURRent:AC
For a full list of the commands supported by the template for this SCPI Instrument Class,
see Appendix C.
Note: An instrument wishing to comply to the AC RMS Ammeter SCPI Instrument Class
must support the SCPI command SYSTem:CAPability? and return an instrument
specifier that includes ACAMMETER (see “7.3.4 Do I Need the Command
“SYSTem:CAPability?” for more information).

6.1.7 Power Supply SCPI Instrument Class
A Power Supply is defined by the SCPI Standard as a basic sourcing instrument. Normally a
power supply provides a constant current or voltage to an electrical circuit.
Command subsystems supported by this SCPI Instrument Class include:

OUTPut Sets the state of the power supply’s output
[SOURce] Sets the output current and/or voltage level. The SOURce node is the default

root node for Power Supply class compliant instruments

26 JPA-SCPI PARSER – USER MANUAL

For a full list of the commands supported by the template for this SCPI Instrument Class,
see Appendix C.
Note: An instrument wishing to comply to the Power Supply SCPI Instrument Class must
support the SCPI command SYSTem:CAPability? and return an instrument specifier that
includes DCPSUPPLY (see “7.3.4 Do I Need the Command “SYSTem:CAPability?” for more
information).

6.1.8 Digitizer SCPI Instrument Class
A Digitizer is defined by the SCPI Standard as an instrument that primarily measures voltage
waveforms against time, such as an oscilloscope.
Command subsystems supported by this SCPI Instrument Class include:

INPut Configures the coupling of the inputs and other settings
[SENSe] Selects the measurement function, range and other parameters. The

SENSe node is the default root node of Digitizer class compliant
instruments.

INITiate Initiates the taking of measurements
TRIGger Configures trigger conditions for the taking of measurements

For a full list of the commands supported by the template for this SCPI Instrument Class,
see Appendix C.
Note: An instrument wishing to comply to the Digitizer SCPI Instrument Class must support
the SCPI command SYSTem:CAPability? and return an instrument specifier that includes
DIGITIZER (see “7.3.4 Do I Need the Command “SYSTem:CAPability?” for more
information).

6.1.9 Signal Switcher SCPI Instrument Class
A Signal Switcher is defined by the SCPI Standard as a basic signal routing instrument. It
can make and break signal connections. More advanced instruments can perform signal
routing bases on events or pre-programmed sequences.
Command subsystems supported by this SCPI Instrument Class include:

[ROUTe] Used to make and break signal connections. The ROUTe node is the default
root node for Signal Switcher class compliant instruments.

For a full list of the commands supported by the template for this SCPI Instrument Class,
see Appendix C.
Note: An instrument wishing to comply to the Signal Switcher SCPI Instrument Class must
support the SCPI command SYSTem:CAPability? and return an instrument specifier that
includes SWITCHER (see “7.3.4 Do I Need the Command “SYSTem:CAPability?” for more
information).

6.1.10 RF and Microwave Source SCPI Instrument Class
An RF or Microwave Source is defined by the SCPI Standard as a sourcing instrument. It
normally produces a sinusoidal output at a constant output level. This class includes signal
generators and sweepers. However, function generators, waveform generators, pulse
generators and optical sources are not covered by this class.
Command subsystems supported by this SCPI Instrument Class include:

6 CHOOSE YOUR SCPI INSTRUMENT CLASS(ES) 27

[SOURce] Selects the frequency and output level of the signal. The SOURce node is
the default root node for RF and Microwave Source class compliant
instruments.

OUTPut Turns output on and off
UNIT Selects the unit of power used to set the output level

For a full list of the commands supported by the template for this SCPI Instrument Class,
see Appendix C.
Note: An instrument wishing to comply to the RF and Microwave Source SCPI Instrument
Class must support the SCPI command SYSTem:CAPability? and return an instrument
specifier that includes RFSOURCE (see “7.3.4 Do I Need the Command
“SYSTem:CAPability?” for more information).

28 JPA-SCPI PARSER – USER MANUAL

 DEFINE YOUR COMMAND SET 29

7 Define Your Command Set
Before any coding, you need to create a list of command specifications, one for each
command to be supported by your instrument. The start of this chapter describes a form of
notation that you can use for your list of command specifications. The remaining sections tell
you about using commands from SCPI Instrument Classes and adding commands of your
own.

7.1 Command Notation
When specifying commands, it is useful to use a standard form of notation. As well as a
clear way of defining your commands for your own use, you can include this list in the
instrument’s user documentation. The SCPI Standard (Syntax And Style, Section 5
“Notation”) defines a form of command notation to be used. The form of notation we
describe here varies slightly from that form, but is in common use. It can make for more
readable command sets, in our opinion. Use whatever form of notation you prefer.
Before we set out the notation conventions, here are some example command
specifications written using the notation:
CONFigure
 [:SCALar]:RESistance [<range>|MIN|MAX [,<resolution>|MIN|MAX]]
 [:SCALar]:FRESistance [<range>|MIN|MAX [,<resolution>|MIN|MAX]]
 [:SCALar]:VOLTage:DC [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

CONFigure?

[SENSe:]
 FUNCtion[:ON] {“VOLTage[:DC]”}
 FUNCtion[:ON]?
 VOLTage:DC:RANGe[:UPPer] {<range>|MIN|MAX}
 VOLTage:DC:RANGe[:UPPer]?
 VOLTage:DC:RANGe:AUTO# {ON|OFF}

TRIGger
 [:SEQuence]:SOURce {BUS|IMMediate|EXTernal#}
 [:SEQuence]:SOURce?

7.1.1 Command Keywords
Group each command within the same subsystem together, i.e. each command that has the
same root node.
List the root node once, at the start of the subsystem. It should be in the leftmost position.
Commands within the subsystem should be listed below this, indented slightly. The root
node should not be repeated.

Separate keywords with a colon (:). Enclose optional keywords in square brackets ([,]).
Remember to enclose one of the adjacent colons if necessary.
Indicate the short form of a keyword using uppercase characters and using lowercase for
the remaining characters of the keyword.

7

7.1.2 Numeric Suffices
You will notice that a couple of the command specifications above include the # symbol.
This is not a literal character, but instead represents the position where a numeric suffix may
be entered by the user. A numeric suffix allows the user to specify the number of the
channel, trigger source etc. where there is more than one choice. The entry of the numeric
suffix by the user is optional – if it is not entered then the value 1 is used1.

Note: The # symbol can be used in the specification in either the command keywords or in a
Character Data parameter entry.

7.1.3 Parameters
Following the command keywords, list the parameters. The parameters are separated from
the command keywords by one of more spaces. Each parameter is separated from the other
parameters by a comma (,).

Boolean parameters should be represented as {OFF|ON}. Indicate the default value, if any,
using bold type or underline.
For parameters that allow Character Data entries (i.e. mnemonics such as MAXimum,
DEFault, etc.), use curly brackets ({,}) to enclose the various choices of mnemonics.
Separate each choice using a pipe character (|). Represent the long and short form of the
mnemonics using upper and lower case characters (as for command keywords). Indicate the
default value, if any, by using bold type or underline. Optional characters within the
Character Data entry should be enclosed inside square ([,]) brackets.

Numeric Value parameters are indicated by their name enclosed in angled brackets (<,>)
The name should inform the user what the value represents, e.g. <range>.

String parameters are again represented by a name within angled brackets. Make it clear
that the parameter is a string, e.g. <message string>.

Indicate optional parameters by enclosing them in square brackets ([,]). You can nest
square brackets if you wish.

7.2 Base Command Set
Instruments that require SCPI compliancy must support a set of base SCPI commands.
JPA-SCPI Parser provides a SCPI Base Class template that includes all these base
commands.
If you are seeking SCPI compliancy then begin by copying all the commands listed in the
SCPI Base Class template (see “C.11 SCPI Base Class”) into your list of command
specifications.
Even if you do not require SCPI compliancy, you may want to look through the Base Class
template and copy any commands you wish to use. For instance, the Base Class template
includes commands for querying errors that are useful to most units.

1 A default value of 1 is the SCPI standard. If you would like to use a different default value then see
section 12.3.3 Default Numeric Suffix.

30 JPA-SCPI PARSER – USER MANUAL

SCPI Compliance Needs – Base Commands
To claim SCPI-compliance you must support all the base SCPI commands. These
commands are included in the SCPI Base Class template. If you remove any of these
commands from your command set, your instrument is not SCPI-compliant.

7.3 SCPI Instrument Class Commands
Having looked through the SCPI Instrument Classes in the previous chapter, you will know
which SCPI Instrument Classes that you either want to comply with or just want to use when
defining your instrument’s command set.
If you do not wish to use any SCPI Instrument Classes then skip to “7.4 Adding Your Own
Commands”.

7.3.1 Using One or More SCPI Instrument Classes with a Template
If you are using any of the 10 SCPI Instrument Classes for which there is a template, then
the commands included in the template are listed in Appendix C. Add all the commands
shown to your command specifications list. Do not include commands that are duplicates if
you are using more than one template.
Note, if you are using 2 or more of the meter classes, e.g. DC Voltmeter, Ohmmeter, then
there is one command that requires special attention:

SENSe:FUNCtion[:ON] {<function list>}

This command is used to select the measurement function of the meter. The parameter
<function list> needs to include all possible functions. Each function should be inside
double-quotes. For example, if you are combining the DC Voltmeter, AC Voltmeter, DC
Ammeter and AC Ammeter templates, then the command specification should be:

SENSe:FUNCtion[:ON]
 {“VOLTage:DC”|”VOLTage:AC”|”CURRent:DC”|”CURRent:AC”}

Note: the order of the functions in the list does not matter.

7.3.2 Using a SCPI Instrument Class without a Template
If you are using any of the SCPI Instrument Classes that does not have a template (Chassis
Dynamometer, Emissions Bench or Emissions Cell), then you will need to refer to the SCPI
Standard for a list of commands required by those Instrument Classes. Add these
commands to your command specifications list.

SCPI Compliance Needs – Instrument Classes
If you do not support a command required by a particular SCPI Instrument Class then
you cannot claim compliancy to that SCPI Instrument Class. However, this is not a
requirement for base SCPI compliancy.

7.3.3 Optional Commands
The SCPI Standard lists commands that can be optionally included for some of the SCPI
Instrument Classes. Refer to the SCPI Standard to see which optional commands exist for
your chosen Instrument Class(es) and add any your require to your command specification
list.

7 DEFINE YOUR COMMAND SET 31

7.3.4 Do I Need the Command “SYSTem:CAPability?”
This command is used to query which SCPI Instrument Classes are supported by an
instrument. You need to support this command if you want SCPI compliance to any of the
SCPI Instrument Classes.
The response to the command is a string of instrument identifiers. There is one instrument
identifier per SCPI Instrument Class. The previous chapter gave the instrument identifiers
required for each SCPI Instrument Class template; instrument identifiers for the other SCPI
Instrument Classes are given in the SCPI Standard. There are also instrument identifiers for
other attributes of the instrument’s capabilities. For more information on the
SYSTem:CAPability? command, refer to the SCPI Standard.

SCPI Compliance Needs – SYSTem:CAPability
An instrument that claims compliancy to one or more SCPI Instrument Classes must
support SYSTem:CAPability?. It is not required for base SCPI compliancy.

7.4 Adding Your Own Commands
You may now want to add commands of your own. If you are aiming for SCPI compliance,
then refer to the SCPI Standard when deciding the format of the command and the
keywords to use – many commands are already defined in the SCPI Standard and should
be used wherever possible. Commands that do not already exist in the SCPI Standard
should follow the basic guidelines described in the SCPI Standard. This will help to give your
instrument a recognizable feel to operators familiar with SCPI.
Whatever commands you decide to include, add each one to your command specifications
list.

32 JPA-SCPI PARSER – USER MANUAL

 AN OVERVIEW OF THE REQUIRED CODING 33

8 An Overview of the Required Coding
You should now have a complete set of commands that you wish to support, so you can
begin coding. The job of coding is made up of two parts:

• Specifying the command set in code

• Integrating calls to JPA-SCPI Parser Access Functions into your own code
Those tasks are dealt with step-by-step in the following chapters. First of all, here is an
overview of what is required.

8.1 Command Specifications
The command specifications and related specifications are all contained in the cmds.c and
cmds.h files. These modules contain structures, arrays and enumerated types that define
the commands supported and the types of parameter allowed for each command.
Templates are included to give you a head start when defining your own cmds.c and cmds.h
files. The first task is to choose which template (or templates) to use and to use them as a
basis for your own files. Once that is done, you will add your own command specifications.
A command specification comprises two parts:

1. Command keywords, e.g. SOURce:VOLTage

2. Parameter specifications, e.g. {<Volts>|MAXimum|MINimum}

Command keywords are simply defined as strings – one string is required per command
supported. A constant array of strings is used to hold the command keywords for each
command specification.
Parameter specifications are more complex, in that they have a basic type, such as Numeric
Value, String, etc., and, optionally, attributes associated with that type of parameter. For
instance, Numeric Values can have a set of allowed units, Boolean parameters can have a
default value, etc.
In addition, some parameter specifications can allow two different types of parameter – in
the example {<Volts>|MAXimum|MINimum}, the parameter may be entered as a number
of volts or as a mnemonic (MAX, MAXIMUM, MIN or MINIMUM).

In order to define a parameter specification, JPA-SCPI Parser uses a hierarchical tree
structure. In its general case, a parameter specification takes this form:

8

Depending on the type of parameter allowed, there may be an attribute structure present. A
Boolean parameter specification has this form:

The parameter specification includes the fact that the type of parameter is P_BOOL
(Boolean). JPA-SCPI Parser knows that this type of parameter has further attributes defined
in a Boolean Parameter Attributes structure. A pointer in the parameter specification defines
which Boolean Parameter Attributes structure is used.

The parameter specification of a Numeric Value takes this form:

Here, the parameter specification has type P_NUM (Numeric Value). This tells the parser
that further attributes will be found in a Numeric Value Parameter Attributes structure,
pointed to within the parameter specification. In this case, the Numeric Value Parameter
Attributes can also optionally include a set of allowed alternative units – this is discussed in
more detail in the following chapters.

String parameter specifications do not have any other attributes. Their parameter
specification is simply:

Similarly, the parameter specification for an Unquoted String is just:

34 JPA-SCPI PARSER – USER MANUAL

The parameter specification of a Numeric List takes this form:

The specification has type P_NUM_LIST (Numeric List). From this information, the parser
knows that other attributes will be found in a Numeric List Parameter Attributes structure,
pointed to within the parameter specification.

Similarly, the parameter specification of a Channel List has this form:

The parser sees that the parameter specification is type P_CHAN_LIST (Channel List). It
therefore knows that further attributes will be found in a Channel List Parameter Attributes
structure pointed to within the parameter specification.

The parameter specification of an Expression takes this simple form:

There are no additional attributes of an Expression parameter specification.

The final type of parameter is Character Data – discussed in more detail later. For now, an
example of character data is MINimum|MAXimum|DEFault. The parameter specification
for Character Data is:

8 AN OVERVIEW OF THE REQUIRED CODING 35

In addition, a parameter specification can be defined so that it allows either Character Data
or another type of parameter, e.g. {<Volts>|MINimum|MAXimum} allows a number of
volts or a mnemonic to be entered. In this case the parameter specification is the same as
Character Data, except that an alternative parameter type is defined. If that parameter type
is Boolean or Numeric Value, then it requires attributes.
The form of a parameter specification that allows either Character Data or another
parameter type is this:

This has been a very brief overview of how command specifications are defined in JPA-
SCPI Parser.
The next few chapters will take you through how to define the structures for your command
set. We follow a “top-down” approach. That is, we take each command of your command set
in turn and define whatever structures and sub-structures are needed to implement the
command’s specification. Any command specifications that have the same requirements in
terms of parameters simply re-use the existing structures. By following this approach, you
will come across all the types of command and parameter specifications required to
implement your command set.

8.2 Integrating into Your Own Code
Once you have defined the command specifications, you will want to integrate JPA_SCPI
Parser into your own code so that your instrument can understand the commands being
sent to it. JPA-SCPI Parser provides a set of Access Functions for use in your own code.
These allow you to:

• Parse commands sent to your instrument, returning either the number of the
matching command specification, or an error code indicating what was wrong, e.g.
invalid parameter, wrong number of parameters, invalid command etc.

• Convert parameters sent in the command into standard C variable types, e.g.
integer, unsigned integer, long integer, double, string etc.

Now you have an overview of the tasks ahead it is time to start coding! The following
chapters take you step-by-step through everything you need to do.

36 JPA-SCPI PARSER – USER MANUAL

 STARTING YOUR IMPLEMENTATION 37

9 Starting Your Implementation

9.1 Select Your Templates
As discussed previously, JPA-SCPI Parser includes templates for 10 of the SCPI Instrument
Classes and also a SCPI Base Class template that provides the commands required for
base SCPI compliancy.
The first task is to decide which template, or templates you need – you always start with at
least one template. The template(s) you will use depend on which SCPI Instrument Classes
you have decided on.
Look at the table below. The left-hand column contains the different possibilities of SCPI
Instrument Class(es) you have chosen. Find the row that matches your situation. The right-
hand column tells you which templates to use.

SCPI Instrument Class(es) Chosen Template(s) to Use
No SCPI Instrument Classes. Use: SCPI Base Class
One SCPI Instrument Class. It has a template. Use the template for the SCPI Instrument Class
One SCPI Instrument Class. It does not have a
template.

Use: SCPI Base Class

Two or more SCPI Instrument Classes. None of
them have templates

Use: SCPI Base Class

Two or more SCPI Instrument Classes. Only
one has a template.

Use the template for the SCPI Instrument Class
that has a template

Two or more SCPI Instrument Classes. Two or
more of them have templates.

Use all the templates for the SCPI Instrument
Classes chosen.

Now that you know which template(s) to use, follow either the instructions in section “9.2
Using a Single Template” or section “9.3 Using Two or More Templates” as appropriate.

9.2 Using a Single Template
If you are using a single SCPI Instrument Class template supplied with JPA-SCPI Parser, or
you are just using the SCPI Base Class template, follow these steps.

9.2.1 Copy the Template into your Project Folder
A template comprises a pair of files: cmds.c and cmds.h. Find your template in Appendix C.
It tells you which folder those files are located in.
Copy the pair of template files into your project folder – leave the originals in their template
folder as you may require them in the future for another instrument.

9.2.2 Customize cmds.c
Open the copy of cmds.c in your project folder. The first few lines of comments at the top of
the file tell you the name of the template and also the revision history of the cmds.c module.
cmds.c will become the main file in your project where your command set is specified and
will be bespoke for your instrument. So delete those first lines of comments about the
template (and insert your own remarks, if you wish).

9

Now skip forward to section “9.4 Tidying Up”.

9.3 Using Two or More Templates
You may want to use 2 or more of the SCPI Instrument Class templates supplied.
Remember that you never need to include the SCPI Base Class template with any other
template, since all templates include all the commands in the SCPI Base Class template.
If you do want to use 2 or more templates then follow these steps.

9.3.1 Copy one of the Templates into your Project Folder
It does not matter which of your templates you start with. Look up one of your templates in
Appendix C and find out which folder it is in. Locate that folder and copy the cmds.c and
cmds.h files into your project folder.

9.3.2 Customize cmds.c
Open the copy of cmds.c in your project folder. The first few lines of comments at the top of
the file tell you the name of the template and also the revision history of the cmds.c module.
cmds.c will become the main file in your project where your command set is specified and
will be bespoke for your instrument. So delete those first lines of comments about the
template (and insert your own remarks, if you wish).

9.3.3 Merge Other Templates into cmds.c
To make things quicker, all the cmds.h files are identical for every template. You only need
to merge the cmds.c files together from your templates.
Taking each one of your other templates in turn, locate the cmds.c file for that template (look
up it’s location in Appendix C) and open it (read-only mode – you do not want to change its
contents). We will refer to this file in the instructions below as the template.
At the same time, open your own copy of cmds.c in your project folder for editing. We will
refer to this file in the instructions below simply as cmds.c.
We will now copy elements from the template into your copy of cmds.c. For the moment we
will not worry about what each element of cmds.c is used for – this is dealt with in later
chapters.

9.3.3.1 Alternative Units
Skip forward in both cmds.c and the template until you find the section of code titled
“Alternative Units”. In this section are located one or two lines starting with
ALT_UNITS_LIST. If the template contains any such lines that are not present in cmds.c
then copy them into cmds.c in this section. The order of the lines does not matter.
For example, if you are copying from the RF and Microware Source template, you will need
to copy this line from that template into cmds.c:
ALT_UNITS_LIST eAltPower[] = {U_VOLT, U_WATT, U_DB_W, U_END}; /* Volts, Watts,

dbW */

9.3.3.2 Numeric Value Types
Locate the sections of cmds.c and the template that are titled “Numeric Value Types”. Are
there any lines in the template that are not present in cmds.c in this section? If so, copy the
line from the template into cmds.c. The order of the lines does not matter. For instance, if

38 JPA-SCPI PARSER – USER MANUAL

your template is RF and Microwave Source, then you may need to copy this line into
cmds.c:
NUM_TYPE sPower = { U_NONE, eAltPower, 0 }; /* All Power Units */

9.3.3.3 Character Data Sequences
Skip forward in both cmds.c and the template to the next section of code: “Character Data
Sequences”.
Again, compare the lines in both files. If any of the lines in the template are not present in
cmds.c, then copy the line into cmds.c. The order of the lines does not matter.
For example, if you are copying from the template Digitizer, you may need to copy these
lines into cmds.c:
CHDAT_SEQ SeqACDCGnd[] = "AC|DC|GND";
CHDAT_SEQ SeqACDC[] = "AC|DC";
CHDAT_SEQ SeqXTIMe[] = "\"XTIMe:VOLTage#[:DC]\"";
CHDAT_SEQ SeqAscii[] = "ASCii";
CHDAT_SEQ SeqPosNegEit[] = "POSitive|NEGative|EITher";
CHDAT_SEQ SeqInternal[] = "INTernal#";

Note that, if you are using more than one meter template, e.g. DC Voltmeter, AC Ammeter,
Ohmmeter etc. then each template will contain an entry in this section called
SeqFunctions[]. This is a special case, since the contents of this entry is different in
each template.

To merge two copies of SeqFunctions[], append the contents of the template to the
existing contents of SeqFunctions[] in cmds.c, separating each entry with a pipe (|)
character. For instance, if your cmds.c entry is:
CHDAT_SEQ SeqFunctions[] = "\"VOLTage:DC\"";

and you are merging with the AC Voltmeter template, you should change the entry in cmds.c
to be:
CHDAT_SEQ SeqFunctions[] = "\"VOLTage:DC\"|\"VOLTage:AC\"";

Of course, if you are merging more than 2 digital meter templates, then this list will contain
more entries.

9.3.3.4 Character Data Types
Locate the next section in the template and cmds.c entitled “Character Data Types”. Once
more compare the entries in the two files. If there are any entries in the template that are not
present in cmds.c then copy those entries into cmds.c. The order of the entries does not
matter.
As an example, if you are copying from template Digitizer, you will need to copy these
entries into your cmds.c file:
CHDAT_TYPE sACDCGnd = { SeqACDCGnd, NO_DEF, ALT_NONE }; /* AC|DC|GND */
CHDAT_TYPE sACDC = { SeqACDC, NO_DEF, ALT_NONE }; /* AC|DC */
CHDAT_TYPE sXTIMe = { SeqXTIMe, NO_DEF, ALT_NONE };

 /* “XTIMe:VOLTage#[:DC]” */
CHDAT_TYPE sASCii = { SeqAscii, NO_DEF, ALT_NONE }; /* ASCii */
CHDAT_TYPE sPosNegEit = { SeqPosNegEit, NO_DEF, ALT_NONE };
 /* POSitive|NEGative|EITher */
CHDAT_TYPE sInternal = { SeqInternal, NO_DEF, ALT_NONE };
 /* INTernal# */

9 STARTING YOUR IMPLEMENTATION 39

9.3.3.5 Numeric List Types
The next section in the template and cmds.c is entitled “Numeric List Types”. Compare the
entries in the two files. If there are any entries in the template that are not present in cmds.c
then copy those entries into cmds.c. The order of the entries does not matter.

9.3.3.6 Channel List Types
The next section in the template and cmds.c is entitled “Channel List Types”. Compare the
entries in the two files. If there are any entries in the template that are not present in cmds.c
then copy those entries into cmds.c. The order of the entries does not matter.

9.3.3.7 Command Specs – Part 1: Command Keywords
Locate the sections of code in the template and cmds.c file titled “Command Specs – Part 1:
Command Keywords”. Each line corresponds to a command supported.
Carefully compare the lines in the template with the lines in cmds.c. If there are any lines in
the template that are not present in cmds.c and you wish to support that command, then
copy it into cmds.c.
Commands in this section of code are grouped into subsystems, i.e. commands with the
same root node. This is only for readability, but it may be best to maintain this organization.
When copying entries from the template into cmds.c, insert the line so that it is within the
group of commands in the same subsystem. For example, if cmds.c was originally the DC
Voltmeter template, and you are copying from the Ohmmeter template, these are some of
the lines you will need to copy:
"SENSe:RESistance:RANGe[:UPPer]", /* 34 */
"SENSe:RESistance:RANGe[:UPPer]?", /* 35 */
"SENSe:RESistance:RANGe:AUTO", /* 36 */
"SENSe:RESistance:RANGe:AUTO?", /* 37 */
"SENSe:RESistance:RESolution", /* 38 */
"SENSe:RESistance:RESolution?", /* 39 */

After copying these lines into cmds.c, entries for the SENSe subsystem would look like this:
"SENSe:FUNCtion[:ON]", /* 32 */
"SENSe:FUNCtion[:ON]?", /* 33 */
"SENSe:VOLTage:DC:RANGe[:UPPer]", /* 34 */
"SENSe:VOLTage:DC:RANGe[:UPPer]?", /* 35 */
"SENSe:VOLTage:DC:RANGe:AUTO", /* 36 */
"SENSe:VOLTage:DC:RANGe:AUTO?", /* 37 */
"SENSe:VOLTage:DC:RESolution", /* 38 */
"SENSe:VOLTage:DC:RESolution?", /* 39 */
"SENSe:RESistance:RANGe[:UPPer]", /* 34 */
"SENSe:RESistance:RANGe[:UPPer]?", /* 35 */
"SENSe:RESistance:RANGe:AUTO", /* 36 */
"SENSe:RESistance:RANGe:AUTO?", /* 37 */
"SENSe:RESistance:RESolution", /* 38 */
"SENSe:RESistance:RESolution?", /* 39 */

Allowing Numeric Suffices
The digitizer template, for instance, already allows a numeric suffix in its SENSe sub-
system commands. You can allow one or more numeric suffices in whichever
commands you need. To do so, insert a ‘#’ character in the command keywords
specification wherever a numeric suffix is to be entered.

40 JPA-SCPI PARSER – USER MANUAL

Don’t worry about the numbering in the comments for now.
If instead you are copying a command from the template that belongs to a subsystem not
yet present in cmds.c then insert it wherever you prefer. It is a good idea to separate
commands from different subsystems with a blank line for readability.
Whenever you add a line to this section of code you must also add a line to the section of
code called “Command Specs – Part 2: Parameters”.

9.3.3.8 Command Specs – Part 2: Parameters
Each line in this section of code corresponds to a line in the section “Commands Specs –
Part 1: Command Keywords”.

• There must be the same number of lines in both sections.

• Each line in Part 1: Command Keywords corresponds to the same line number in
Part 2: Parameters – the order of the entries in the two parts must be the same.

So for each line you have added into cmds.c, locate the corresponding line in the template
in Command Specs – Part 2: Parameters; use the comments beside each line to help you –
the command numbers and command syntax will match. Copy this line into cmds.c so that
the order of the lines in Part 1 and Part 2 of Command Specs in cmds.c is the same.
For instance, say you have added the last line (highlighted) of these 3 lines to “Command
Specs – Part 1” in cmds.c:
"SENSe:VOLTage:DC:RESolution", /* 38 */
"SENSe:VOLTage:DC:RESolution?", /* 39 */
"SENSe:RESistance:RANGe[:UPPer]", /* 34 */

You therefore need to copy the corresponding entry into “Command Specs – Part 2” in
cmds.c from the template, and insert it in the same order:
{{ { REQ CH_DAT sMinMaxVolts },{ NOP } }}, /* 38 :VOLTage:DC:RESolution */
 /* {<resolution>|MIN|MAX} */
{{ NO_PARAMS }}, /* 39 :VOLTage:DC:RESolution? */
{{ { REQ CH_DAT sMinMaxOhms },{ NOP } }}, /* 34 :RESistance:RANGe[:UPPer]*/
 /* {<range>|MIN|MAX} */

9.4 Tidying Up
You will now have a copy of cmds.c that contains all the commands from each of the
templates you are using. It may also contain commands that you do not wish to support.

9.4.1 Remove Unwanted Commands
Look through your cmds.c file at the section of code “Command Specs – Part 1: Keywords”.
If there are any commands that you do not wish to support then:

• Remove the line from “Command Specs – Part 1”

• Locate the corresponding line in “Command Specs – Part 2” and remove it also

9.4.2 Renumber Commands
If you have removed any unwanted commands from cmds.c or you used 2 or more
templates, then you will need to follow the steps described here.
Go back to the top of “Command Specs – Part 1: Command Keywords” in your cmds.c file.
Each entry has a comment on the right-hand side that gives the command number.

9 STARTING YOUR IMPLEMENTATION 41

Renumber these command numbers in the comments as required, so that the top command
is numbered 0, the command below it is 1, and so on for all the commands. Accurate
command numbering is vital for a correct implementation of the parser.
Now go to the section of code in cmds.c titled “Command Specs – Part 2: Parameters”.
Again, each entry here has a comment on the right-hand side contain the command number
and also the syntax of the command it represents.
Again, renumber the commands in the comments so that the top entry has command
number 0, the next one is 1, etc.
It is vital that the command specifications in Part 1 and Part 2 of cmds.c match up. Make
sure that:

• The last command number in both parts is the same – this tells you there are the
same number of entries

• The order of commands in both parts are the same. Have both sections of code
viewable at once and check that the first line in both sections correspond to the same
command syntax. Repeat this for each line in turn.

42 JPA-SCPI PARSER – USER MANUAL

 SPECIFY MAXIMUM NUMBER OF PARAMETERS 43

10 Specify Maximum Number of Parameters
What is the maximum number of parameters that any of your commands can accept? By
default, the templates are all configured so commands can accept a maximum of 2
parameters per command.
If the maximum number of parameters accepted by any of your commands is 2 (or 1) then
you do not need to make any modifications. Skip forward to the next chapter. Otherwise,
follow the steps described here.

10.1 Set Maximum Parameters in cmds.h
Open your copy of the cmds.h header file. Locate the section of code entitled “Maximum
Parameters”. There is a single definition within this section. It looks like this:

/**/
/* Maximum Parameters */
/* ------------------ */
/* USER: Modify this value to be equal to the maximum number of parameter accepted */
/* by any of the supported Command Specs */
#define MAX_PARAMS (2) /* Most params accepted by any command */
/**/

Change the definition of MAX_PARAMS from the value (2) to whatever the maximum
number of parameters you require. Save and close cmds.h.

10.2 Modify cmds.c for Maximum Parameters
10.2.1 NO_PARAMS
Now open your copy of the file cmds.c. Find the section of code headed “More definitions for
use in the Command Spec Table”. There is a definition of NO_PARAMS. It looks like this:
 #define NO_PARAMS {NOP},{NOP}

NO_PARAMS is used as shorthand for commands that do not take any parameters. It
replaces all the columns of parameter information with the single symbol NO_PARAMS.

Change the definition of NO_PARAMS so that it comprises the same number of {NOP} items
as the maximum number of parameters.

For example, if you have defined MAX_PARAMS as (4), then use this definition:
#define NO_PARAMS {NOP},{NOP},{NOP},{NOP}

If a few of your commands can accept many parameters then refer to “17.4 Commands
that allow Many Parameters” for tips.

10.2.2 Command Specifications
The other modification you need to make to cmds.c is in the section of code entitled
“Command Specs - Part 2: Parameters”. This is where the specifications of each
command’s parameters are kept. The code looks similar to this:

10

/**/

/* Command Specs - Part 2: Parameters */
/* ---------------------------------- */
/* USER: Include all the Command Specs supported */
/* Notes: */
/* a) Each line in this table corresponds to the line in the Command Spec Command */
/* Keyword table with the same index. There must be the same number of entries */
/* in both tables. */
/**/
const struct strSpecCommand sSpecCommand[] =
{
/* C o m m a n d */
/* Param 1 Param 2 Number Syntax */
/* ======= ======= ====== ====== */
/* Opt/Req Type Attributes Opt/Req Type Attributes */
/* ------- ---- ---------- ------- ---- ---------- */
/* */

/* Commands required by all SCPI-Compliant Instruments */

/* Required IEEE488.2 Common Commands (see SCPI Standard V1999.0 ch4.1.1) */
{{ NO_PARAMS }}, /* 0 *CLS */
{{ { REQ NUM sNoUnits },{ NOP } }}, /* 1 *ESE <value>*/
{{ NO_PARAMS }}, /* 2 *ESE? */
{{ NO_PARAMS }}, /* 3 *ESR? */
{{ NO_PARAMS }}, /* 4 *IDN? */
{{ NO_PARAMS }}, /* 5 *OPC */
{{ NO_PARAMS }}, /* 6 *OPC? */
{{ NO_PARAMS }}, /* 7 *RST */
{{ { REQ NUM sNoUnits },{ NOP } }}, /* 8 *SRE <value>*/
{{ NO_PARAMS }}, /* 9 *SRE? */

Commands that allow one or more parameters have a row that takes the format:
{{ {<parameter1>} , {<parameter2>} }},

For example:
{{ { OPT CH_DAT sMinMaxAmps },{ OPT CH_DAT sMinMaxAmps } }},

If the definition of MAX_PARAMS has changed from 2 to another value, then this format
needs modifying. If for instance MAX_PARAMS is 3 then the format required is now:

{{ {<parameter1>} , {<parameter2>} , {<parameter3>} }},

To make this change, add this text between the {<parameter2>} item and the closing
double curly brackets:

,{NOP}

For example, in the case above the row would become:
{{ {OPT CH_DAT sMinMaxAmps},{OPT CH_DAT sMinMaxAmps},{NOP} }},

If MAX_PARAMS was defined as 4, then you would need to insert:
,{NOP},{NOP}

and so on.

Note that rows that use the NO_PARAMS definition do not need modifying, i.e.:
{{ NO_PARAMS }},

Something to bear in mind when you make these modifications is readability. The templates
are coded so that the columns of this table line up with the headings above. If you increase
the maximum number of parameters, then you should create column headings in the
comment lines above the structure, i.e. copy the ”Param2 – Opt/Req, Type, Attributes”
headings for parameter 3 etc. When you insert the extra {NOP}, line them up with the
columns above. This does mean that the table will get wider and you may need to scroll to
see the full width of the lines. This is usually preferable to having columns that do not line
up.

44 JPA-SCPI PARSER – USER MANUAL

 SPECIFY SUPPORTED UNITS 45

11 Specify Supported Units
Before we can begin specifying the supported commands, we need to decide what units are
to be supported by your instrument.
Numeric Value parameters often allow units to be specified after the value. For instance:

100V

3.5 MOHM

-56UA

Look through all the parameters used by your commands and make a list of all the different
types of unit that are supported, e.g.:Volts, Amps, Ohms, Hertz, Decibel Watts, etc.
For the purposes of JPA-SCPI Parser, units are split into two parts:

Base Units e.g. Volts, Amps, Ohms, Decibel Watts, Hertz

Unit Multiplier e.g. p, n, u, m, k, MA, G

Only write down the base units supported at this stage, e.g. do not list milli-volts and kilo-
volts separately, but just write down Volts.
When a user enters a Numeric Value as a parameter, JPA-SCPI Parser automatically
converts the value, whatever unit multiplier was used, into the base units.
For instance, a user might enter:

1.5UA

JPA-SCPI Parser splits this into the value 1.5 and the Unit String UA. It then recognizes UA
as belonging to the Amps unit family and converts the value to the base units, Amps. When
your code calls an Access Function of JPA-SCPI Parser, you will be returned with the value
1.5e-6 (amps). This removes the need for your code to perform the scaling itself.

11.1 Specify Base Units in cmds.h
Open your copy of the cmds.h file for editing and locate the section of code entitled “Base
Unit Types”. It will look like this:
/***/
/* Base Unit Types */
/* --------------- */
/* USER: Add Base Unit Types supported by your instrument */
/* Optional: Remove Base Unit Types not supported */
/***/
enum enUnits
{
 U_NONE, /* USER: Do not modify this line */

 U_VOLT, /* User-modifiable list of supported base unit types */
 U_AMP,
 U_OHM,
 U_WATT,
 U_DB_W,
 U_JOULE,
 U_FARAD,
 U_HENRY,
 U_HERTZ,
 U_SEC,
 U_KELVIN,
 U_CELSIUS,

11

 U_FAHREN,

 U_END /* USER: Do not modify this line */
};

Each entry between U_NONE and U_END represents a type of base unit. Take a look at your
list of units. Are there any in your list that do not have an entry in the source code? If you do
require support for a unit not already present then add an entry for each one to this
enumeration. Use the format:

U_<base unit name>

Use a meaningful name, e.g. U_BAR for Bar (unit of pressure) or U_GRAM for Gram (unit of
mass).

The order of the entries in this enumeration is unimportant, except that U_NONE must be the
first value, and U_END must be the last.

For now, do not remove any of the types of base unit that are not required. The deletion of
unused specifications is dealt with in chapter 15.
Parser Limitations: A maximum of 255 base unit types are allowed.

Now save and close cmds.h.

11.2 Specify Supported Units in cmds.c
Return to your cmds.c file and locate the section headed “Unit Specs”. This section contains
all of the unit strings recognized by the parser and also defines which unit family and what
multiplier each unit string represents.
Take a look at the lines defining the Voltage unit strings:
/* Volts */
 { "NV", U_VOLT, -9 }, /* NanoVolt */
 { "UV", U_VOLT, -6 }, /* MicroVolt */
 { "MV", U_VOLT, -3 }, /* MilliVolt */
 { "V", U_VOLT, 0 }, /* Volt */
 { "KV", U_VOLT, 3 }, /* KiloVolt */
 { "MAV", U_VOLT, 6 }, /* MegaVolt */

If you have added a new entry (or entries) to the base units enumeration in cmds.h then you
will need to add some entries here.

Insert a line before the END_OF_UNITS line at the bottom of this section of source code.

Each type of unit has one or more rows in this table. Each row takes the format:
{ “<unit string>”, <base units>, <units multiplier> },

Create new rows as you require before the END_OF_UNITS line. The elements of each row
are described here.

11.2.1 Unit String
The unit string is the sequence of characters that the parser will recognize as the units
component of a Numeric Value parameter. It comprises an optional unit multiplier followed
by the base unit string, e.g.:

The unit string MV is made up of M the unit multiplier (meaning milli, or 1e-3) and V
(meaning volts) the base unit string.

46 JPA-SCPI PARSER – USER MANUAL

Some requirements of the unit string:
1. Every unit string must be unique.
2. Do not include spaces within the string
3. Unit strings do not support long and short forms – all characters of the unit string must

be entered, so specify unit string using uppercase characters only.
4. When choosing unit multiplier characters, you should use those defined in the

IEEE488.2 standard, as used by SCPI:

Unit Multiplier Character(s) Multiplier
A 1e-18
F 1e-15
P 1e-12
N 1e-9
U 18-6
M 1e-3
K 1e3
MA 1e6
G 1e9
T 1e12
PE 1e15
EX 1e18

Note that there are a couple of exceptions: when the units are HZ or OHM, then the unit
multiplier characters for 1e6 are M or MA, e.g. MHZ means MegaHertz, and so does
MAHZ. If the user needs to specify, say, milliohms, then they can use micro-ohms
instead and multiply the value by 1000.

5. When choosing what base unit characters to use, again the IEEE488.2 Standard defines
the preferred strings. Use these wherever possible:

Base Unit String Unit
A Amp
C Coulomb
DBW Decibel Watts1
F Farad
G Gram
H Henry
HZ Hertz
J Joule
K Degree Kelvin
CEL Degree Celsius
FAR Degree Fahrenheit
L Liter
LM Lumen
LX Lux

1 DBUW represents Decibel MicroWatts, DBMW represents Decibel MilliWatts, and so on. Note: DBM
is also allowed – it is equivalent to DBMW.

11 SPECIFY SUPPORTED UNITS 47

M Meter
N Newton
OHM Ohm
PAL Pascal
RAD Radian
S Second
SIE Siemens
T Tesla
V Volt
W Watt
WB Weber

6. It is acceptable in JPA-SCPI Parser to define different unit strings that have the same
meaning if you wish. For instance, you will see that within the templates that resistance
unit strings use OHM or R as the base unit string. This allows entry of resistance values
to be followed by either e.g. KOHM or KR etc.

7. You may include the following characters within the unit string if required:

/ e.g. M/S for Meters per Second
. e.g. N.M for Newton Meters

digits e.g. M/S2 for Meters per Second2

11.2.2 Base Units
The base units parameter defines which base units the entry belongs to. This must be one
of the base unit types defined in the enumeration in cmds.h. For example, if you have added
the enumeration type U_GRAM to the types in cmds.h, then you will use U_GRAM as your
base units for entries that represent grams, kilograms, etc.

11.2.3 Units Multiplier
The units multiplier specifies how numbers entered with the units string are to be multiplied
in order to convert them to the base units.
JPA-SCPI Parser uses this formula:

Stored Value = Number Entered x 1e<units multiplier>

For example, the unit string UV is associated with base units U_VOLTS and has the units
multiplier –6. If a Numeric Value parameter is entered as 100UV, JPA-SCPI Parser converts
this to base units (volts) like this:

Stored Value = 100 x 1e-6
 = 0.0001 Volts

The units multiplier must be an integer between –43 and +43.

11.2.4 Example Entries
For example, say you have added the base unit type U_GRAM to the enumeration in cmds.h.
You now wish to allow entries in micrograms, milligrams, grams, and kilograms. You would
add these lines to the table in cmds.c:

48 JPA-SCPI PARSER – USER MANUAL

/* Grams */

 { "UG", U_GRAM, -6 }, /* MicroGram */
 { "MG", U_GRAM, -3 }, /* MilliGram */
 { "G", U_GRAM, 0 }, /* Gram */
 { "KG", U_GRAM, 3 }, /* KiloGram */

11.2.5 Expanding Ranges of Supported Units
The templates support a typical range of unit strings, e.g. the base unit Volts is associated
with the unit strings NV, UV, MV, V, KV, MAV (Nanovolts to MegaVolts). But what if you
want to allow entries in picovolts (PV), for instance? This is easily done.
Locate the Volts section of the table. Insert this line before the row containing the definitions
for unit string “NV”:

{ "PV", U_VOLT, -12 }, /* PicoVolt */

Do this for whatever unit strings you wish to support that are not already present in cmds.c.
Note that the order of entries in the table is unimportant, but you may wish to group rows for
the same units together as we have done in the templates.

Parser Limitations: A maximum of 255 entries are allowed in this table.

11 SPECIFY SUPPORTED UNITS 49

 OPTIONAL SUPPORT FEATURES 51

12 Optional Support Features

12.1 Introduction to the Optional Support Features
JPA-SCPI Parser includes support for some features that you may or may not require. By
disabling support features that you do not need, you will save ROM and RAM space.
The optional support features are:

• Numeric Suffix - Allows you to specify positions in your command keyword and
character data specifications where the user can enter a numeric
suffix. This feature can be used for instruments that support multiple
channels, triggers, etc., to specify command sets without having to
create duplicate commands for each channel.

• Numeric List
parameter type

- Additional parameter type to allow entry of Numeric List parameters

• Channel List
parameter type

- Additional parameter type to allow entry of Channel List parameters

• Expression
parameter type

- Additional parameter type to allow entry of Expression parameters

If you are unsure as to which of these features you need to support, then take a look at
“Appendix A – An Introduction to SCPI” where you will find more information in the relevant
sections. The SCPI Standard also describes them in detail.
In addition, two further options allow you to (a) increase the number of characters that can
be entered in an input command line, and (b) increase the number of command definitions
that can be supported. These are described further on in this section.

12.2 Enabling/Disabling the Features You Need
By default, all the optional features are supported. If you wish to disable one or more of
them, then open cmds.h. Locate the section near the top of the file entitled “Optional
Support Features”. It looks like this:

/**/
/* Optional Support Features */
/* ------------------------- */
/* USER: #define the features that you require and comment out those not required */
#define SUPPORT_NUM_SUFFIX /* Numeric Suffix in keywords */
#define SUPPORT_NUM_LIST /* Numeric List parameter type */
#define SUPPORT_CHAN_LIST /* Channel List parameter type */
#define SUPPORT_EXPR /* Expression parameter type */
/**/

Each #define enables one of the optional support features. By commenting out the
#define lines for the features you do not require, you will disable that feature.
Each of the support features are individually selectable, so you can disable as many as you
want in order to save memory.

12

12.3 Numeric Suffix Support Settings
If you are using the optional Numeric Suffix support feature, then you should now look at the
section of code in cmds.h entitled “Numeric Suffix”. It looks like this:

#ifdef SUPPORT_NUM_SUFFIX
/**/
/* Numeric Suffix */
/* -------------- */
/* (only used if Numeric Suffix support feature is enabled) */
/* */
/* USER: Modify these values as required. See User Manual for more information. */
#define MAX_NUM_SUFFIX (10) /* Maximum number of numeric suffices */
 /* possible in a single command */
#define NUM_SUF_MIN_VAL (1) /* Minimum value allowed (0 or greater) */
#define NUM_SUF_MAX_VAL (UINT_MAX) /* Maximum value allowed (<=UINT_MAX) */
#define NUM_SUF_DEFAULT_VAL (1) /* Default value if no suffix present */
/**/
#endif

As you can see, this code is only compiled if the Numeric Suffix support feature is enabled.
There are four attributes you can change relating to how numeric suffices work on your
system. These are described below.

12.3.1 Maximum Number of Numeric Suffices
Take a look at the set of command specifications you are implementing. What is the
maximum number of numeric suffices that can be entered by a user in a single command?
Count the number of ‘#’ symbols in each command specification. If you have included any
‘#’ symbols in any of your character data parameter specifications then you must include
these too. For example, look at this command specification:

TRIGger:SOURce# {INTernal|EXTernal#}

In this case, the user may enter up to 2 numeric suffices.
Whichever of your commands can accept the most numeric suffices, use this number as the
maximum allowed. Change the definition of MAX_NUM_SUFFIX to be this number, or leave it
at the default value of 10, which will nearly always be sufficient. You will save a few bytes of
RAM if you reduce this value.

12.3.2 Range of Allowed Numeric Suffices
By default, the parser allows any number between 1 and UINT_MAX (e.g. 65535 if unsigned
ints use 16 bits) to be entered as a numeric suffix. This is nearly always acceptable, since
you can perform your own range checking on the numeric suffices after the parser returns
them.
If you wish though, you can change the range of values that are allowed as numeric
suffices. Remember that this range checking affects all numeric suffices in your system. If
you use numeric suffices for more than one purpose, e.g. output channels and trigger
sources, then you may want different range limits to apply in each case. To do this, make
the parser’s numeric suffix range limits the superset of your requirements, and perform your
own range-checking afterwards.
The range of values allowed for numeric suffices by the parser are #defined as
NUM_SUF_MIN_VAL and NUM_SUF_MAX_VAL. Change their definitions to the values you
require. Limitations are:

• Each value must be between 0 and UINT_MAX

• NUM_SUF_MAX_VAL must be greater than (or equal to) NUM_SUF_MIN_VAL

52 JPA-SCPI PARSER – USER MANUAL

12.3.3 Default Numeric Suffix
The SCPI Standard says that if a numeric suffix is not entered then it is equivalent to being
entered as 1 (SCPI Standard V1999.0, 6.2.5.2 “Multiple Identical Capabilities”). This is how
JPA-SCPI Parser operates by default. However, if you want a different default numeric suffix
then you can.

The default value is #defined as NUM_SUF_DEFAULT_VAL. You can make it whatever value
you want, even if it is outside the range of NUM_SUF_MIN_VAL and NUM_SUF_MAX_VAL.
This can be useful, for instance, if you need to discriminate between the user entering, say:

FETCH?
and

FETCH1?
By default, both entries will return a numeric suffix of 1. You will not be able to tell which
version of the command that the user entered. If you do need to know if a numeric suffix
was entered or not then change the #define of NUM_SUF_DEFAULT_VAL to equal 0. Now if
the user enters FETCH?, the numeric suffix returned will be 0, whereas if the user enters
FETCH1?, the numeric suffix returned will be 1.

12.4 Channel List Support Settings
If you are using the optional support feature Channel List parameter type, then take a look at
the section of code in cmds.h entitled “Maximum Dimensions allowed in a Channel List
Entry”:

#ifdef SUPPORT_CHAN_LIST
/**/
/* Maximum Dimensions allowed in a Channel List Entry */
/* -- */
/* (only used if Channel List support feature is enabled) */
/* */
/* USER: Modify this value to be equal to the maximum number of dimensions that are */
/* allowed in any of the channel list parameters. */
/* See User Manual for more information. */
#define MAX_DIMS (3) /* Maximum dimensions in a channel list */
/**/
#endif

Consider each of the Channel List parameter types accepted by your commands. What is
the most number of dimensions accepted by any of them? On many instruments, just one
dimension is used. A few instruments make use of two dimensions. A very few instruments
have more than 2. By default, JPA-SCPI Parser allows up to 3 dimensions.

Define MAX_DIMS to be the maximum number of dimensions supported by your Channel
List parameters. You will save a few bytes of RAM if you reduce this number.

12.5 Option to Support More than 255 Characters in an
Input Command Line

By default, the library allows up to 255 characters in a command line for parsing. If you need
to allow more than 255 characters in an input command line, you can by following these
steps:

1) Open your cmds.h file
2) Locate the line that begins:

12 OPTIONAL SUPPORT FEATURES 53

#define SCPI_CHAR_IDX unsigned char

3) Modify this definition to use the unsigned type you require, for instance:
#define SCPI_CHAR_IDX unsigned int

In this example. The maximum number of characters allowed is now 65535 (assuming the
unsigned int type uses 16 bits).

12.6 Option to Support More than 255 Commands
By default, the library allows up to 255 commands to be defined in its cmds.c file. Normally
this limit is adequate. However if you require more than 255 command definitions then you
can do so in this way:

4) Open your cmds.h file
5) Locate the line that begins:

#define SCPI_CMD_NUM unsigned char

6) Modify this definition to use the unsigned type you require, for instance:
#define SCPI_CMD_NUM unsigned int

In this example. The maximum number of commands is now 65535 (assuming the unsigned
int type uses 16 bits).

54 JPA-SCPI PARSER – USER MANUAL

 SPECIFY COMMAND KEYWORDS 55

13 Specify Command Keywords
Every command specification has the same fundamental format:

<command keywords> [<parameters>]

Some examples:

Command Keywords Parameters
*CLS none
*ESE <value>
SENSe:FUNCtion[:ON?] none
[SOURce:]FREQuency[:CW] {<freq>|MINimum|MAXimum}
CONFigure[:SCALar]:RESistance [<range>|MINimum|MAXimum}]

, [<resolution>|MINimum|MAXimum]

The command keywords and parameter specifications are defined in two separate tables in
the cmds.c file. The first task is to list the command keywords for each of your supported
commands.
In your cmds.c file, locate the section titled “Command Specs - Part 1: Command
Keywords”. It will look like this:
/***/
/* Command Specs - Part 1: Command Keywords */
/* -- */
/* USER: Create an entry for each sequence of Command Keywords supported. */
/* Notes: */
/* a) Include full command tree in all entries */
/* a) Enclose optional keywords in square brackets, including any colon */
/* b) Enter required characters in Uppercase, optional characters in Lower */
/* c) DO NOT include spaces */
/* d) Duplicate entries are allowed if required in the Command Specs */
/***/
const char *SSpecCmdKeywords[] =
{ /* Command Number */
 /* -------------- */
/* Commands required by all SCPI-Compliant Instruments */

/* Required IEEE488.2 Common Commands (see SCPI Standard V1999.0 ch4.1.1) */
 "*CLS", /* 0 */
 "*ESE", /* 1 */
 "*ESE?", /* 2 */
 "*ESR?", /* 3 */
 "*IDN?", /* 4 */
 "*OPC", /* 5 */
 "*OPC?", /* 6 */
 "*RST", /* 7 */
 "*SRE", /* 8 */
 "*SRE?", /* 9 */

Now look at your list of command specifications that you want to implement. Taking each
one in turn, look at it’s command keywords and check if there is already an entry for it in this
part of the source code. For example, the commands *CLS and SYSTem:Error[:NEXT]?
will already be present (unless you deleted them).
Any of your command specifications that already have an entry do not require any more
work – they are already implemented.
For command specifications that do not yet have an entry in the source code, you need to
follow the steps described below for each one.

13

13.1 Create a Row in Command Specs – Part 1: Command
Keywords

Each command specification has a row in this part of cmds.c. You need to create a new row
for the command specification.
First, decide where to add the row. If the command is in the same subsystem as one that
already exists in the source code, then you will add it there. If it is in a subsystem not yet
present in the source code, then you will add it after the end of the existing rows, but always
before the END_OF_COMMANDS line.

Each row has this format:
“<command keywords>”, /* <command number> */

These two elements of the row are described below.

13.1.1 Command Keywords
The command keywords parameter is based on the standard SCPI notation:

1. Characters that are required for the long-form of a keyword are lowercase.
2. Optional keywords should be enclosed in square brackets ([,]). Remember to

include the colon as well within the square brackets.
3. Square brackets cannot be nested.

4. Allow a numeric suffix by use of a ‘#’ character in the place where the numeric suffix
will be entered. A command can have more than one if required.

5. Do not include spaces.
Look at the existing rows in the source code for examples.

13.1.2 Command Number
Although this is just a comment and does not affect how the code compiles, command
numbers are important to ensuring a successful implementation of your JPA-SCP Parser.
Command numbers are used in these ways:

• As a return parameter from the JPA-SCPI Parser function SCPI_Parse() to tell you
which command was matched

• Within cmds.c to cross-reference the command keywords with the command
parameter specifications

The command number for the first row is always 0, the one below it is 1, and so on,
increasing by 1 each row. If you have inserted any rows you will need to adjust the
numbering of the rows. You may want to wait until you have added all your new rows before
renumbering the command numbers, so they are in the correct order once more.

Parser Limitation: By default, a maximum of 255 rows are allowed in this table, i.e. up to 255
commands are supported. This can be increased as you require. See 12.6 Option to
Support More than 255 Commands for details.

56 JPA-SCPI PARSER – USER MANUAL

 SPECIFY COMMAND PARAMETERS 57

14 Specify Command Parameters
You should now have a command keywords entry for every command in your command set.
Locate the section of your source code file cmds.c that is titled “Command Specs - Part 2:
Parameters”.
This section requires a corresponding row for each row in the command keywords section.
The number of rows and the order of the rows must be the same. In this way, the command
keywords and the specifications of the command parameters are associated together to
form the complete command specification.
Look at the first row in the parameter specifications. It may be this:
 {{ NO_PARAMS }}, /* 0 *CLS */

You should find that the first row in the command keywords table corresponds to the same
command, e.g., in this case it has the same “*CLS” keyword.

Check all the other entries in the command keywords section of source code and identify
any that do not yet have an entry in the parameters specifications table.
For each of these commands, you need to create a new row in the parameter specifications
table. The row must be inserted in the table so that the order of rows in the command
keywords and parameter specifications tables are the same. Follow the instructions in the
sections below to create the row.

14.1 Commands without Parameters
If the command takes no parameters then create this row in the parameter specifications:

{{ NO_PARAMS }}, /* command syntax */

That completes the specification for this command.

14.2 Commands with Parameters
If the command takes one or more parameters then create this new line in the parameter
specifications:

{{ }}, /* command syntax */

You will notice that double opening and closing curly brackets ({{) are used to enclose each
entry in the array of structures sSpecCommand[]. Although only one curly bracket may seem
necessary, some compilers (e.g. Borland® C++ BuilderTM) will not compile this source code
without two present.

Most compilers that work with just one bracket also allow two curly brackets. For maximum
portability, we have therefore used two curly brackets in our templates. If this causes a problem
with your compiler simply remove one of the opening and closing curly brackets from each line in
this section of code.

Each parameter that the command allows needs a parameter specification. Enter the
parameter specifications between the double curly brackets.
Each parameter specification takes this format:

{<Required>, <Type>, <Attributes>}

14

For each parameter allowed by the command, follow the instructions in the sections below
to create the parameter specification. Repeat this process for each of the parameters of the
command.
In addition, if the command allows less parameters than the maximum number of
parameters specified, use this parameter specification in place of parameters that are not
used:

{ NOP }

For example, a command that only takes one parameter where MAX_PARAMS is defined as 3
will use a line of this format:

{{ {<Required>, <Type>, <Attributes>} , { NOP } , { NOP } }},

14.3 Required and Optional Parameters
A parameter is classed as either required or optional. Required parameters must be entered
by the user in order for the command to be valid. Optional parameters can be entered or left
out – the command will still be valid.
In SCPI notation, square brackets are used to surround optional parameters, e.g.:

TRIGger:DELay? [MINimum|MAXimum]

This command takes one parameter. The parameter is optional as indicated by the square
brackets surrounding it.
However, SCPI notation also uses another method to indicate that a parameter is optional:
the default value.
Consider this command written in SCPI notation:

INPut:IMPedance:AUTO {OFF|ON}

Here, the command takes one parameter, either OFF or ON. It also allows the command to
be entered without a parameter, in which case it is treated as if the parameter is entered as
OFF. OFF is the default value. The use of bold type or underline indicates the default value
for a parameter. If a parameter has a default value then that parameter is optional, even
though its specification is not surrounded by square brackets.
In summary, a parameter is classed as optional in JPA-SCPI Parser if:

• the parameter is within square brackets (nested or not nested)
or:

• the parameter has a default value
If the parameter is required then start the parameter specification with this code:

{ REQ

Alternatively, if the parameter is optional then start the specification like this:
 { OPT

58 JPA-SCPI PARSER – USER MANUAL

14.4 What Type of Parameter?
JPA-SCPI Parser categorises parameters into these basic types:

• Numeric Value

• Boolean

• Character Data

• String

• Unquoted String

• Numeric List

• Channel List

• Expression

• Character Data with Alternative Parameter Type
You must decide which of these types the parameter is. The sections below should help you
to decide. Once you have decided the type, follow the instructions for specifying that type of
parameter.

14.4.1 Numeric Value
A Numeric Value parameter is used to allow entry of a number. In addition, the number may
be followed by units. For instance, a Numeric Value parameter may be used to allow entry
of the voltage level to output on a programmable power supply, or the current range to set
on an ammeter.
Numeric Value parameters can be entered with or without units, e.g. 100, 56V, 1.25e-6H,
25.7MOHM. In addition, JPA-SCPI Parser allows entry of Numeric Values in binary, octal
and hexadecimal number bases, using the SCPI Standard’s syntax (see “A.3.8.1.1 Number
Bases”).
Numeric Value parameters allow entry of integer values, real values (i.e. decimal point),
positive and negative numbers.

14.4.1.1 Examples of Numeric Value Parameters
Command Specification Example Valid Commands
*ESE <enable value> *ESE 100

*ESE 5
*ESE #B10010100
*ESE #H7F

SOURce:VOLTage:DC <voltage> SOUR:VOLT:DC 12.5
SOUR:VOLTAGE:DC 100MV
SOURCE:VOLT:DC 12.7e+3 V
SOUR:VOLT:DC –14.6V

14.4.2 Boolean
A Boolean parameter is used to accept a selection of two states using the mnemonics ON
and OFF. This type of parameter may be used, for instance, in a command that turns auto-
ranging on and off, or sets the state of a relay.
In addition to the mnemonics ON and OFF, a Boolean parameter also accepts a Numeric
Value instead. 1 represents ON and 0 represents OFF. Any other value is rounded to the

14 SPECIFY COMMAND PARAMETERS 59

nearest integer. If the rounded value is 0 then the Boolean value is OFF, otherwise the value
is ON.

14.4.2.1 Example of a Boolean Parameter
Command Specification Example Valid Commands
SENSe:RESistance:RANGe:AUTO {ON|OFF} SENS:RES:RANG:AUTO ON

SENS:RES:RANGE:AUTO OFF
SENSE:RESISTANCE:RANGE:AUTO 15

14.4.3 Character Data
Some commands allow the entry of mnemonics such as MINimum, MAXimum, DEFault,
ONCE, UP, DOWN etc. We call such parameters Character Data.
The mnemonics can have a long and a short-form version, just like command keywords.
Optional characters (i.e. long-form only) are specified in lowercase.

In some ways you could treat Boolean parameters as a case of Character Data where the
allowed mnemonics were ON and OFF. However, JPA-SCPI Parser also allows entry of Numeric
Values for parameters specified as Boolean (as described above). This feature is not available
with parameters of type Character Data, so do not specify a parameter as type Character Data
when you could use Boolean.

14.4.3.1 Example of a Character Data Parameter
Command Specification Example Valid Commands
TRIGger[:SEQuence]:SOURce
 {BUS|IMMediate|EXTernal}

TRIG:SOUR BUS
TRIG:SEQ:SOUR IMM
TRIGGER:SOURCE IMMEDIATE
TRIG:SEQUENCE:SOUR EXT

14.4.4 String
A String parameter is one that accepts a string of ASCII characters delimited by quotes,
either double (“) or single (‘) quotes. Such a parameter could be used to allow input of a
message to display on an instrument’s readout, or a string to store in calibration memory.
A String parameter can accept any ASCII printable character within the quotes, including
commas. However the quotes used to delimit the string cannot appear within the string.

14.4.4.1 Example of a String Parameter
Command Specification Example Valid Commands
SYSTem:DISPlay <message> SYST:DISP “Outputting 10 Volts”

SYSTEM:DISP ‘Select “1A” Range’

14.4.5 Unquoted String
On some occasions you may want to accept a string of characters without the delimiting
quotes required by the String parameter type. For instance, to allow entry of a password or
pass-code in order to access some restricted functions of your instrument or to access its
calibration factors. In this case the parameter type Unquoted String may be used. It allows
entry of any sequence of ASCII printable characters with the following restriction:

• The string of characters cannot include commas, since a comma is used to separate
the parameter from a following parameter

60 JPA-SCPI PARSER – USER MANUAL

14.4.5.1 Example of an Unquoted String Parameter
Command Specification Example Valid Commands
SYSTem:SECure:CODE <code> SYST:SEC:CODE WHJ87RT

SYSTEM:SECURE:CODE ABC1234

14.4.6 Numeric List
A Numeric List parameter allows a variable number of numeric values to be entered as a
single parameter. Each entry in the list can be retrieved by JPA-SCPI Parser for your code
to deal with. Numeric Lists can include ranges of values too; these are indicated by a colon
(:) between the first and last numeric values of the range.

Since a Numeric List is a type of SCPI Expression, it is enclosed by round brackets.

14.4.6.1 Example of a Numeric List Parameter
Command Specification Example Valid Commands
SYSTem:ERRor:ENABle[:LIST] <list> SYST:ERR:ENAB (1,5,7:12,15:20,23)

SYSTEM:ERR:ENAB:LIST (1.7:3.78,5.6)

NOTE: You must enable optional support for Numeric Lists if any of your commands can
accept a Numeric List parameter – see “12 Optional Support Features”.

14.4.7 Channel List
A Channel List parameter allows a set of one of more channel numbers to be entered as a
single parameter. Each entry in the list can be retrieved by JPA-SCPI Parser for your code
to deal with.
Entries in Channel Lists can have more than one dimension, e.g. two dimensions can be
used to indicate row and column on a switch matrix. Dimensions are indicated using a ‘!’
symbol to separate the dimensions.
Channel Lists can also include ranges of channel numbers; these are indicated by a colon
(:) between the first and last numeric values of the range.

Since a Channel List is a type of SCPI Expression, it is enclosed by round brackets. In
addition, it is identified as a Channel List by use of a ‘@’ symbol as the first character inside
the brackets.

14.4.7.1 Example of a Channel List Parameter
Command Specification Example Valid Commands
ROUTe:OPEN <channel list> ROUT:OPEN (@1,2,3:7,4)

ROUTE:OPEN (@2!3:7!5,8!2)

NOTE: You must enable optional support for Channel Lists if any of your commands can
accept a Channel List parameter – see “12 Optional Support Features”.

IMPORTANT NOTE: The Channel List parameter type can be used to parse any type of channel
list as long as it only contains numeric values. The SCPI Standard also allows an instrument to
accept alphanumeric module specifiers and path names if required (SCPI Standard V1999.0,
8.3.2 Channel Lists). If you require this additional support, then you will need to use the
Expression parameter type instead, and use your own code to perform the required parsing.

14 SPECIFY COMMAND PARAMETERS 61

14.4.8 Expression
SCPI defines a set of parameter types that it refers to as Expressions. Two of the types are
described above, namely Numeric Lists and Channel Lists. SCPI also supports other types
of Expression, including numeric expressions (i.e. calculations) and DIF (Data Interchange
Format) expressions. If you want to allow one of these types of parameters to be entered
then use the Expression parameter type. Note that you will need to perform your own
parsing of the contents of the Expression.
The Expression parameter type allows entry of any string of text that is surrounded by
brackets. In addition, it can itself include nested brackets – the nesting level is validated by
JPA-SCPI Parser, and incorrect numbers of opening or closing brackets return an error code
from the SCPI_Parse() function.

14.4.8.1 Example of an Expression Parameter
Command Specification Example Valid Commands
TRACe:FEED:OCONdition TRAC:FEED:OCON (INPUT5=ON)

NOTE: You must enable optional support for Expressions if any of your commands can
accept an Expression parameter – see “12 Optional Support Features”.

14.4.9 Character Data with Alternative Parameter Type
Quite often, none of the 8 parameter types above will fit your parameter. For instance,
consider the command specification:

SENSe:CURRent:DC:RESolution {<resolution>|MINimum|MAXimum}

This parameter can accept either a Numeric Value (<resolution>) or Character Data (the
mnemonics MINimum and MAXimum). This type of parameter specification is very common
in SCPI command sets.
We class this parameter in JPA-SCPI Parser as Character Data with an alternative
parameter type (Numeric Value).
Any parameter that can accept Character Data may also have an alternative type of
parameter. The alternative type of parameter can be any of the 4 remaining types of
parameter. Here are examples of each type:

Alternative Type Parameter Specification Example Parameter Entries
Numeric Value {<seconds>|MINimum|MAXimum} 15

27.5US
MIN
MINIMUM
MAX

Boolean {ON|OFF|ONCE} ON
ONCE
0
15

String {CLEAr|<message>} CLEA
“Testing…”
“Reset unit now”

62 JPA-SCPI PARSER – USER MANUAL

Unquoted String {GUESt|<code>} GUES
GUEST
Q4HY78

Numeric List {ALL|NONe|<numeric list>} ALL
(1:9,12,15)

Channel List {ALL|NONe|<channel list>} NON
(@2!3:5!7,9!9)

Expression {MINimum|MAXimum|<expr>} MAX
(15*7.8)

14.5 Specifying Parameter Type in Code
Once you have decided which of the 9 types of parameter you are specifying, follow the
instructions in the relevant section below.

14.6 Specifying a Numeric Value Parameter
If the parameter is type Numeric Value, then enter the second item in the parameter
specification as:

NUM

For example, if the parameter is required and type Numeric Value, then its specification so
far will be:

{ REQ NUM

Note that a comma is not required between the items.

14.6.1 Defining Numeric Values without Units
If the parameter does not allow units, e.g. a parameter that represents a count, then set the
third and last item of the parameter specification to this:

sNoUnits

This is the last item in the parameter specification so close the parameter specification with
a closing curly bracket.
For example, if the parameter is optional, then its specification will be:

{ OPT NUM sNoUnits }

This completes the parameter’s specification.

14.6.2 Defining Numeric Value Types
If the parameter does allow units to be entered, then we need to give JPA-SCPI Parser
some more information – the attributes of the Numeric Value.
Many Numeric Value parameters are used in the same way, e.g. a voltage level. Such
parameters have the same attributes, i.e. they allow volts as the units and any values
entered without units are taken as volts.

14 SPECIFY COMMAND PARAMETERS 63

To save time and memory space repeating these attributes for each particular parameter,
we instead define a single Numeric Value Type and then reference that from the
parameter’s specification.
A Numeric Value Type has three attributes:

• Default Units

• Alternative Units

• Exponent of Default Units

14.6.2.1 Default Units
Numeric Value parameters that allow units can also specify their default units. These are the
units used if the parameter entered does not include units. For example, say you want to
support this command:

SENSe:CURRent:DC:RANGe <current>

By defining the default units as Amps for this command’s parameter, it would allow the
following entries:

100UA
0.95MA
1e-6A
1.2
1.5e-9

Notice that entries can contain A as the units along with all its derivatives: UA (microamps),
MA (milliamps) etc. In addition, entries without units are allowed. The value is treated as if it
was followed by the A symbol, since the default units are defined as Amps for this
parameter.

14.6.2.2 Alternative Units
On some occasions you may want a command parameter to allow more than one type of
units. For instance the same command may allow input of a temperature in degrees Kelvin,
Celsius or Fahrenheit. In this case the parameter has alternative units.
If the parameter allows alternative units then you need to either create a new alternative
units list or to use an existing one.
Locate the section in cmds.c headed “Alternative Units”. It will look similar to this:
/***/
/* Alternative Units */
/* ----------------- */
/* USER: Create a list for each set of Alternative Units supported (if any) */
/* Notes: */
/* a) Always include U_END as last member of each list */
/***/
ALT_UNITS_LIST eAltDegCAndF[] = {U_CELSIUS, U_FAHREN, U_END}; /* Deg C & Deg F*/

The example shown here defines an alternative units list comprising degrees Celsius and
degrees Fahrenheit. You may have other alternative units lists in your cmds.c. If none of the
existing lists is suitable for the parameter you need to create a new one.
To do this, add a line similar to the one shown above of this format:
ALT_UNITS_LIST <name>[] = {<alternative units type>[,...], U_END};

64 JPA-SCPI PARSER – USER MANUAL

The <name> does not matter as long as it is unique and is a valid variable name. You may
find it best to prefix it with the characters eAlt (indicating enumerated type, alternative
units), and give it a name indicating the types of alternative units it includes.
The list of alternative units within the curly brackets can contain any of the base units types
defined in enUnits in the file cmds.h. No type should be repeated and the last type must be
U_END.

Note: If you already have default units defined for the parameter, these are automatically
included in the set of allowed units so you do not need to include them in the alternative
units list.

Parser Limitations: A maximum of 255 entries are allowed in any array. There is no limit on
the number of arrays that can be defined

14.6.2.3 Exponent of Default Units
This feature allows you to specify that values entered without units are automatically scaled
according to an exponent.
For instance, if you wish a command to have default units of MilliHenrys, you first specify
that the default units are Henrys. You then need to tell JPA-SCPI Parser that values without
units are MilliHenrys rather than Henrys. This is done by setting the exponent of default
units.
A value entered without units is scaled (multiplied) according to this formula:

Stored Value = Value Entered x 1e<exponent of default units>

For example, if the exponent of default units is –3, and a value of 125 is entered without
units, then the value stored by JPA-SCPI Parser is:

 Stored Value = 125 x 1e-3 = 0.125

The exponent of default units can have any integer value between –43 and + 43. Normally it
is 0, meaning no scaling is performed.

14.6.2.4 Specifying the Numeric Value Type
You will now have:

• Decided the default units, if any, of the parameter

• If the parameter allows alternative units then either created a new alternative units
list or found an existing one to use

• Decided the exponent of default units (default is 0)
We now need to either to find an existing Numeric Value Type with these same attributes or
create a new one.
Locate the section of code in cmds.c titled “Numeric Value Types”. It will look something like
this:
/***/
/* Numeric Value Types */
/* --------------------- */
/* USER: Create a structure for each type of Numeric Value supported */
/* Notes: */
/* a) See JPA-SCPI Parser User Manual for details */
/***/
/* Default Alternative Exponent of */
/* Name Units Units Default Units */
/* ----- ------- ----------- ------------- */
NUM_TYPE sNoUnits = { U_NONE, NAU, 0 }; /* No Units */
NUM_TYPE sVolts = { U_VOLT, NAU, 0 }; /* Volts only */

14 SPECIFY COMMAND PARAMETERS 65

NUM_TYPE sAmps = { U_AMP, NAU, 0 }; /* Amps only */
NUM_TYPE sOhms = { U_OHM, NAU, 0 }; /* Ohms only */
NUM_TYPE sWatts = { U_WATT, NAU, 0 }; /* Watts only */
NUM_TYPE sDBWatts = { U_DB_W, NAU, 0 }; /*db Watts only*/
NUM_TYPE sJoules = { U_JOULE, NAU, 0 }; /* Joules only */
NUM_TYPE sFarads = { U_FARAD, NAU, 0 }; /* Farads only */
NUM_TYPE sHenrys = { U_HENRY, NAU, 0 }; /* Henrys only */
NUM_TYPE sHertz = { U_HERTZ, NAU, 0 }; /* Hertz only */
NUM_TYPE sSecs = { U_SEC, NAU, 0 }; /* Seconds only*/
NUM_TYPE sMicroHenrys= { U_HENRY, NAU, 0 }; /* Henrys only */
NUM_TYPE sKelvin = { U_KELVIN, NAU, 0 }; /* Deg Kelvin only */
NUM_TYPE sCelsius = { U_CELSIUS,NAU, 0 }; /* Deg Celsius only*/
NUM_TYPE sFahren = { U_FAHREN, NAU, 0 }; /* Deg Fahrenh only*/
NUM_TYPE sTemperature= { U_KELVIN, eAltDegCAndF, 0 }; /* Kelvin; also */
 /* allow C & F */

Each entry in this section is a different Numeric Value Type. The three columns within the
curly brackets correspond to the attributes we have been describing: default units,
alternative units, and exponent of default units.
If any of the existing entries have the attributes that you require for the parameter, then
there is no need to create a new entry here. Instead, just note the name of the entry, e.g.
sVolts.

If no entry in the Numeric Value Types table matches the requirements of the parameter
then you need to create a new one. To do this, add a line after the last entry. The line is of
this form:

NUM_TYPE <name> = { <default units>, <alternative units>,
 <exponent of default units> };

<name> should be used to describe the purpose of this Numeric Value type, e.g. sGrams for
a Numeric Value Type that allows entries in grams.
The other attributes are as described above:

<default units> must be one of the types defined in the enumeration enUnits in your
cmds.h file.

<alternative units> must be a name or an entry in the Alternative Units section of
cmds.c, or NAU if no alternative units are allowed.

<exponent of default units> must be an integer between –43 and +43. Use 0 if you
are not using this feature.

14.6.3 Defining Numeric Values with Units
Now that you have either created a new Numeric Value Type or found an existing Numeric
Value Type to use, you can complete the specification of this Numeric Value parameter.
Return to the “Command Specs - Part 2: Parameters” section of your cmds.c file. To recap,
so far you have specified if the parameter is required or optional, and that it is type Numeric
Value. For instance, if the parameter is required, then the specification will look like this:

{ REQ NUM

The last step is to add a third column containing the name of the Numeric Value Type that
contains the attributes of this parameter, and then to close the specification with a closing
curly bracket.

For instance, if the parameter uses the Numeric Value Type sVolts, then the parameter
specification will look like this:

{ REQ NUM sVolts } parameter is required

66 JPA-SCPI PARSER – USER MANUAL

or this:

{ OPT NUM sVolts } parameter is optional

14.7 Specifying a Boolean Parameter
If the parameter is type Boolean, then enter the second item in the parameter specification
as:

BOOLEAN

For example, if the parameter is required and type Boolean, then its specification so far will
be:

{ REQ BOOLEAN

A comma is not required between the items.

14.7.1 Default Value
Boolean parameters can have a default value. The default value is used if the parameter is
not entered.
A Boolean parameter has 3 possibilities:

SCPI Notation Default Value
{ON|OFF} No default value
{ON|OFF} Default value = ON
{ON|OFF} Default value = OFF

Remember that if the parameter has a default value then the parameter must be optional.

14.7.2 Completing the Specification
The third column in the parameter’s specification tells JPA-SCPI Parser about the default
value.

• If the parameter has no default value then complete the Boolean parameter’s
specification with:

sBNoDef

• If the parameter has a default value of ON (1) then complete the Boolean
parameter’s specification with:

sBDefOn

• If the parameter has a default value of OFF (0) then complete the Boolean
parameter’s specification with:

sBDefOff

In all cases, close the parameter specification with a closing curly bracket.
For example, if the parameter is optional, type Boolean and has a default value of ON, then
its parameter specification is:

{ OPT BOOLEAN sBDefOn }

14 SPECIFY COMMAND PARAMETERS 67

14.8 Specifying a Character Data Parameter
If the parameter is type Character Data, then enter the second item in the parameter
specification as:

CH_DAT

For example, if the parameter is optional and type Character Data, then its specification so
far will be:

{ OPT CH_DAT

A comma is not required between the items.
We now need to tell JPA-SCPI Parser what possible mnemonics are allowed and which
one, if any, is the default item.

14.8.1 Defining Character Data Sequences
Character Data Sequences are strings that contain the choices of mnemonics allowed.
Take a look in your cmds.c file at the section titled “Character Data Sequences”:
/***/
/* Character Data Sequences */
/* ------------------------ */
/* USER: Create an entry for each Character Data Sequence supported. */
/* Notes: */
/* a) Separate each Item in a Sequence with a pipe (|) char */
/* b) Enter required characters in Uppercase, optional characters in Lower */
/* c) Quotes (single and double) are allowed but must be matched */
/* d) Do not include spaces within the strings */
/***/
/* Name Sequence */
/* ---- --------------- */
CHDAT_SEQ SeqMinMax[] = "MINimum|MAXimum";
CHDAT_SEQ SeqMinMaxDef[] = "MINimum|MAXimum|DEFault";
CHDAT_SEQ SeqBusImmExt[] = "BUS|IMMediate|EXTernal";

Each entry contains the set of mnemonics allowed for certain Character Data parameters.
Take a look through the existing entries to see if any of the entries contains the set of
mnemonics allowed by the parameter. If not, you will need to create a new entry. To do this,
add a new line of this format:

CHDAT_SEQ <name>[] = “<sequence>”;

<name> is the name of the Character Data Sequence. It should reflect the options within the
sequence, e.g. SeqMinMax for the sequence MINimum|MAXimum.

<sequence> is the set of mnemonics allowed. Each mnemonic must be separated from
each other by a pipe (|) character. Each mnemonic must obey these rules:

• Use lowercase characters to indicate the characters only required when entering the
long form of a keyword (exactly how you do when specifying command keywords).

• Optional characters should be enclosed in square ([,]) brackets. Square brackets
must not be nested.

• A numeric suffix can be allowed by entering a ‘#’ character in the position it is to be
entered, e.g. OUTput# allows entry of OUTP5, OUTP, etc.

• Quotes (single and double) are allowed but must be matched, i.e. there must be an
even number of them.

• Spaces should not be included unless they are within quotes.
Take a look at the existing entries for examples of valid sequences.

68 JPA-SCPI PARSER – USER MANUAL

14.8.2 Defining Character Data Types
Having selected the Character Data Sequence for the parameter, or having created a new
one, we need to specify other attributes, such as the default item, if any.
This is done in the Character Data Type.
Locate the section of code titled “Character Data Types” in your file cmds.c:

/**/
/* Character Data Types */
/* -------------------- */
/* USER: Create a structure for each type of Character Data Sequence supported */
/* Optional: Remove structures not required */
/* Notes: */
/* a) See JPA-SCPI Parser User Manual for details */
/**/
/* Default Alternative */
/* Name Sequence Item # Parameter */
/* ---- -------- ------- ----------- */
CHDAT_TYPE sMinMaxNoUnits = { SeqMinMax, NO_DEF, P_NUM, (void *)&sNoUnits};
CHDAT_TYPE sMinMaxVolts = { SeqMinMax, NO_DEF, P_NUM, (void *)&sVolts};
CHDAT_TYPE sMinMaxDefVolts = { SeqMinMaxDef, NO_DEF, P_NUM, (void *)&sVolts};
CHDAT_TYPE sMinMaxAmps = { SeqMinMax, NO_DEF, P_NUM, (void *)&sAmps};
CHDAT_TYPE sMinMaxDefAmps = { SeqMinMaxDef, NO_DEF, P_NUM, (void *)&sAmps};
CHDAT_TYPE sMinMaxOhms = { SeqMinMax, NO_DEF, P_NUM, (void *)&sOhms};
CHDAT_TYPE sMinMaxDefOhms = { SeqMinMaxDef, NO_DEF, P_NUM, (void *)&sOhms};
CHDAT_TYPE sMinMaxHertz = { SeqMinMax, NO_DEF, P_NUM, (void *)&sHertz};
CHDAT_TYPE sMinMaxDefHertz = { SeqMinMaxDef, NO_DEF, P_NUM, (void *)&sHertz};
CHDAT_TYPE sMinMaxSecs = { SeqMinMax, NO_DEF, P_NUM, (void *)&sSecs};
CHDAT_TYPE sMinMaxDefSecs = { SeqMinMaxDef, NO_DEF, P_NUM, (void *)&sSecs};
CHDAT_TYPE sBusImmExt = { SeqBusImmExt, NO_DEF, ALT_NONE };

Each entry has three columns: Character Data Sequence, Default Item Number and
Alternative Parameter Type.

14.8.2.1 Character Data Sequence
The Character Data Sequence is the name of the Character Data Sequence string that
contains the allowed mnemonics.

14.8.2.2 Default Item Number
The Default Item Number is the number of the item within the Character Data Sequence that
is used if the parameter is not entered. Item numbers start at 0 for the first mnemonic in the
sequence.

14.8.2.3 Alternative Parameter Type
For now, we ignore this column. It is used when specifying a parameter that is type
Character Data with an Alternative Parameter Type. We will discuss it later.
Character Data parameters that do not have an Alternative Parameter Type always use
ALT_NONE in this column.

Now take a look at the existing Character Data Types defined in your cmds.c file. Does one
match your parameter’s specification? If so, then note down its name. Otherwise you will
need to create a new Character Data Type. To do that, add a new line of this format:

CHDAT_TYPE <name> = { <sequence>, <default item>, ALT_NONE };

<name> should be formed so that it indicates the items in the sequence. For instance, if the
parameter allows MINimum|MAXimum then you could use the name: sMinMax.

<sequence> is the name of a Character Data Sequence defined in the section of code
titled “Character Data Sequences”.

14 SPECIFY COMMAND PARAMETERS 69

<default item> is the number of the default item in the sequence. Item numbers start at
0 for the first item in the sequence. If there is no default item then use the value NO_DEF in
this column.
As an example, a Character Data Type that allows entry of BUS|IMMediate|EXTernal that
has a default value of EXTernal could be specified as:

CHDAT_TYPE sBusImmExt = { SeqBusImmExt, 2, ALT_NONE };

Take a look at existing entries in the Character Data Types section for more examples.

14.8.3 Completing the Specification of a Character Data Parameter
By this stage, you will have the name of the Character Data Type (either an existing one or
one that you have created) that matches the specification of your parameter.
Returning to the command parameter specifications section of your cmds.c file, so far, your
parameter specification looks like this:

{ REQ CH_DAT parameter is required
or this:

{ OPT CH_DAT parameter is optional
To complete the specification, add a third column containing the name of the Character Data
Type and close the specification with a closing curly bracket.
For instance, if the parameter is required, and the Character Data Type used is
sBusImmExt, then the parameter specification would be:

{ REQ CH_DAT sBusImmExt }

14.9 Specifying a String Parameter
If the parameter is type String, then enter the second item in the parameter specification as:

STRING

There is no third column with a String parameter, so simply close the curly brackets.
For example, if the parameter is required and type String, then its specification will be:

{ REQ STRING }

If the parameter is optional and type String, its specification will be:
{ OPT STRING }

A comma is not required between the items.

14.10 Specifying an Unquoted String Parameter
If the parameter is type Unquoted String, then enter the second item in the parameter
specification as:

UNQ_STR

There is no third column with an Unquoted String parameter, so simply close the curly
brackets.

70 JPA-SCPI PARSER – USER MANUAL

For example, if the parameter is required and type Unquoted String, then its specification
will be:

{ REQ UNQ_STR }

If the parameter is optional and type Unquoted String, its specification will be:
{ OPT UNQ_STR }

A comma is not required between the items.

14.11 Specifying a Numeric List Parameter
If the parameter is type Numeric List, then enter the second item in the parameter
specification as:

NUM_L

For example, if the parameter is required and type Numeric List, then its specification so far
will be:

{ REQ NUM_L

A comma is not required between the items.
The attributes of each Numeric List parameter are defined in a Numeric List Type. This is
referenced from the parameter specification. Numeric List parameters with the same
attributes can reference the same Numeric List Type.

14.11.1 Defining a Numeric List Type
A Numeric List Type has the following attributes:

• Allow real (non-integer) values? TRUE/FALSE

• Allow negative values? TRUE/FALSE

• Use range checking? TRUE/FALSE
If TRUE, then additionally:

o Minimum value allowed
o Maximum value allowed

In this way, JPA-SCPI Parser can perform basic validation of entries in a Numeric List. You
may need to perform your own checks in addition, e.g. if you only want to accept even
numbers etc.

14.11.1.1 A Note on Range Checking
The values you can specify for range checking are stored as long integers. This means that
the minimum and maximum values cannot include a decimal point, and are limited to the
maximum value representable by a long integer on your system.
As a result of this, if the Numeric List Type is set to allow real (non-integer) numbers, then
the range checking will not consider any digits after the decimal point, e.g. If the maximum
value is set to 100, then any real value less than 101 will be permitted (e.g. 100.99 will be
allowed). If this is insufficient, then you can, of course, perform your own range checking of
the entries instead.

14 SPECIFY COMMAND PARAMETERS 71

14.11.1.2 Specifying a Numeric List Type
Locate the section of code in cmds.c titled “Numeric List Types”:
#ifdef SUPPORT_NUM_LIST
/***/
/* Numeric List Types */
/* ------------------ */
/* USER: Create a structure for each type of Numeric List supported */
/* Notes: */
/* a) See JPA-SCPI Parser User Manual for details */
/* Allow Allow Range Allowed Values */
/* Name Reals? Neg? Check? Minimum Maximum */
/* ---- ------ ---- ------- ------- ------- */
NUMLIST_TYPE sNLAnyNumber = { TRUE, TRUE, FALSE, 0, 0 };
NUMLIST_TYPE sNLInts = { FALSE, TRUE, FALSE, 0, 0 };
NUMLIST_TYPE sNLPosInts = { FALSE, FALSE, FALSE, 0, 0 };
NUMLIST_TYPE sNL8BitPosInts = { FALSE, FALSE, TRUE, 0, 255 };
#endif

If any of the entries have the attributes that you require for the parameter, then there is no
need to create a new entry. Instead, just note the name of the entry, e.g. sNLInts.

If no entry in the Numeric List Types table matches the requirements of the parameter, then
you need to create a new one. To do this, add a line after the last entry. The line is of this
form:
NUMLIST_TYPE <name> = { <reals?>, <negs?>, <range check?>, <min>, <max> };

<name> should be used to describe the purpose of this Numeric List Type, e.g.
sNLPosInts is the name of a Numeric List Type that allows positive integers.

<reals?> should be TRUE if the entries in the numeric list can be real (non-integer) as well
as integer values. If it is FALSE, then only integer values are allowed.

<neg?> should be TRUE if the entries in the numeric list can be negative as well as positive
values. If it is FALSE, then only positive values are allowed.

<range check?> should be TRUE if you wish range checking to be performed on each
entry in the numeric list. If it is FALSE, then no range checking will be performed.

Set <min> and <max> to the minimum and maximum values allowed in the numeric list. If
<range check?> is set to FALSE, then these values are ignored.

14.11.2 Completing the Specification of a Numeric List Parameter
Returning to the command parameter specifications section of your cmd.c file, so far, your
parameter specification looks like this:

{ REQ NUM_L parameter is required

or this:

{ OPT NUM_L parameter is optional

To complete the specification, add a third column containing the name of the Numeric List
Type and close the specification with a closing curly bracket.

For instance, if the parameter is required, and the Numeric List Type used is sNLPosInts,
then the parameter specification would be:

{ REQ NUM_L sNLPosInts }

72 JPA-SCPI PARSER – USER MANUAL

14.12 Specifying a Channel List Parameter
If the parameter is type Channel List, then enter the second item in the parameter
specification as:

CH_L

For example, if the parameter is optional and type Channel List, then its specification so far
will be:

{ OPT CH_L

A comma is not required between the items.
The attributes of each Channel List parameter are defined in a Channel List Type. This is
referenced from the parameter specification. Channel List parameters with the same
attributes can reference the same Channel List Type.

14.12.1 Defining a Channel List Type
A Channel List Type has the following attributes:

• Allow real (non-integer) values? TRUE/FALSE

• Allow negative values? TRUE/FALSE

• Use range checking? TRUE/FALSE
If TRUE, then additionally:

o Minimum value allowed
o Maximum value allowed

• Minimum number of dimensions allowed

• Maximum number of dimensions allowed
In this way, JPA-SCPI Parser can perform basic validation of entries in a Channel List. You
may need to perform your own checks in addition, e.g. if you only want to accept even
numbers etc.

14.12.1.1 A Note on Range Checking
The values you can specify for range checking are stored as long integers. This means that
the minimum and maximum values cannot include a decimal point, and are limited to the
maximum value representable by a long integer on your system.
As a result of this, if the Channel List Type is set to allow real (non-integer) numbers, then
the range checking will not consider any digits after the decimal point, e.g. If the maximum
value is set to 100, then any real value less than 101 will be permitted (e.g. 100.99 will be
allowed). If this is insufficient, then you can, of course, perform your own range checking of
the entries instead.
If the channel list accepts entries of more than one dimension, then you should also note
that the same range checking is performed across all dimensions. If you wish to accept a
different range of values in the second dimension, for instance, then you will need to
perform your own range checking.

14.12.1.2 Dimensions
Some channel lists accept multi-dimensional entries, e.g. a two dimensional channel list can
be used to accept entry of row and column information. Set the minimum and maximum
dimensions according to the requirements of your channel list. For example, a channel list

14 SPECIFY COMMAND PARAMETERS 73

that only accepts single dimension entries should have minimum and maximum dimensions
both set to 1.

14.12.1.3 Specifying a Channel List Type
Locate the section of code in cmds.c titled “Channel List Types”:
#ifdef SUPPORT_CHAN_LIST
/***/
/* Channel List Types */
/* ------------------ */
/* USER: Create a structure for each type of Channel List supported */
/* Notes: */
/* a) See JPA-SCPI Parser User Manual for details */
/***/
/* Allow Allow Range Dimensions Allowed Vals*/
/* Name Reals? Neg? Check? Min Max Min Max */
/* ---- ------ ---- ------ --- --- ---- ---- */
CHANLIST_TYPE sCL1Dim = { TRUE, TRUE, FALSE, 1, 1, 0, 0 };
CHANLIST_TYPE sCL2Dim = { TRUE, TRUE, FALSE, 2, 2, 0, 0 };
CHANLIST_TYPE sCL1DimInts = { FALSE, TRUE, FALSE, 1, 1, 0, 0 };
CHANLIST_TYPE sCL2DimPosInts = { FALSE, FALSE, FALSE, 2, 2, 0, 0 };
#endif

If any of the entries have the attributes that you require for the parameter, then there is no
need to create a new entry. Instead, just note the name of the entry, e.g. sCL2Dim.

If no entry in the Channel List Types table matches the requirements of the parameter, then
you need to create a new one. To do this, add a line after the last entry. The line is of this
form:
NUMLIST_TYPE <name> = { <reals?>, <negs?>, <range check?>, <min dimensions>,

 <max dimensions>, <min value>, <max value> };

<name> should be used to describe the purpose of this Channel List Type, e.g.
sCL2DimPosInts is the name of a Channel List Type that take 2 dimensional entries, and
allows positive integers.

<reals?> should be TRUE if the entries in the channel list can be real (non-integer) as well
as integer values. If it is FALSE, then only integer values are allowed.

<neg?> should be TRUE if the entries in the channel list can be negative as well as positive
values. If it is FALSE, then only positive values are allowed.

<range check?> should be TRUE if you wish range checking to be performed on each
entry in the channel list. If it is FALSE, then no range checking will be performed.

Set <min dimensions> and <max dimensions> to only allow entries with the correct
number(s) of dimensions. If all entries in the channel list must have the same number of
dimensions, then both these values should be the same.

Set <min value> and <max value> to the minimum and maximum values allowed in the
numeric list. If <range check?> is set to FALSE, then these values are ignored.

14.12.2 Completing the Specification of a Channel List Parameter
Returning to the command parameter specifications section of your cmd.c file, so far, your
parameter specification looks like this:

{ REQ CH_L parameter is required

or this:

{ OPT CH_L parameter is optional

74 JPA-SCPI PARSER – USER MANUAL

To complete the specification, add a third column containing the name of the Numeric List
Type and close the specification with a closing curly bracket.

For instance, if the parameter is required, and the Numeric List Type used is sNLPosInts,
then the parameter specification would be:

{ REQ CH_L sCL2DimPosInts }

14.13 Specifying an Expression Parameter
If the parameter is type Expression, then enter the second item in the parameter
specification as:

EXPR

There is no third column with an Expression parameter, so simply close the curly brackets.
For example, if the parameter is required and type Expression, then its specification will be:

{ REQ EXPR }

If the parameter is optional and type Expression, its specification will be:
{ OPT EXPR }

A comma is not required between the items.

14.14 Specifying a Character Data Parameter with an
Alternative Parameter Type

For parameters of type Character Data with an Alternative Parameter Type you first need to
carry out these steps:
1) If the Alternative Parameter Type is Numeric Value then create or select a Numeric

Value Type that matches the parameter’s requirements when a Numeric Value is
entered – see section “14.6.2 Defining Numeric Value Types” for details.

2) Create or select a Character Data Sequence that matches the requirements of the
parameter when used in Character Data form – see section “14.8.1 Defining Character
Data Sequences”.

Now you can create or select a Character Data Type for the parameter. Follow the
instructions in section “14.8.2 Defining Character Data Types”, but this time we will specify
the Alternative Parameter Type, rather than using ALT_NONE in that column. You may also
want to indicate in the name of the Character Data Type what other parameter is allowed,
e.g. sMinMaxVolts could be used to indicate a Character Data Type that accepted
MINimum|MAXimum|<volts>.
As always, if, after deciding what Alternative Parameter Type is needed, a Character Data
Type already exists with all the same attributes required by the parameter, don’t create a
new Character Data Type, just use the existing one instead.

14.14.1 Alternative Parameter Type
The Alternative Parameter Type in the Character Data Type entry tells JPA-SCPI Parser
what other type of parameter can be entered. Its specification depends on the type of
Alternative Parameter.

14 SPECIFY COMMAND PARAMETERS 75

Follow one of the sections below, according to what type of alternative parameter is allowed.

14.14.1.1 Alternative Parameter Type is Numeric Value
In this case Alternative Parameter Type takes the form:

P_NUM, (void *)&<Numeric Value Type>

For instance, if the Numeric Value Type used is called sOhms, then the Alternative
Parameter Type entry in the Character Data Type table will be:

P_NUM, (void *)&sOhms

14.14.1.2 Alternative Parameter Type is Boolean
If the Boolean value has no default value, then the Alternative Parameter Type is:

P_BOOL, (void *)&sBNoDef

If the Boolean value has a default of On (1), then the Alternative Parameter Type is:
P_BOOL, (void *)&sBDefOn

If the Boolean value has a default of Off (0), then the Alternative Parameter Type is:
P_BOOL, (void *)&sBDefOff

14.14.1.3 Alternative Parameter Type is String
In this case, the Alternative Parameter Type is always:

P_STR, (void *)0

14.14.1.4 Alternative Parameter Type is Unquoted String
In this case, the Alternative Parameter Type is always:

P_UNQ_STR, (void *)0

14.14.1.5 Alternative Parameter Type is Numeric List
In this case Alternative Parameter Type takes the form:

P_NUM_LIST, (void *)&<Numeric List Type>

For instance, if the Numeric List Type used is called sNLInts, then the Alternative
Parameter Type entry in the Character Data Type table will be:

P_NUM_LIST, (void *)&sNLInts

14.14.1.6 Alternative Parameter Type is Channel List
In this case Alternative Parameter Type takes the form:

P_CHAN_LIST, (void *)&<Channel List Type>

For instance, if the Channel List Type used is called sCL2Dim, then the Alternative
Parameter Type entry in the Character Data Type table will be:

P_CHAN_LIST, (void *)&sCL2Dim

14.14.1.7 Alternative Parameter Type is Expression
In this case, the Alternative Parameter Type is always:

P_EXPR, (void *)0

76 JPA-SCPI PARSER – USER MANUAL

14.14.2 Completing the Specification of a Character Data Parameter
with an Alternative Parameter Type

Returning to the command parameter specifications section of your cmds.c file, add a
second column to your parameter specification:

CH_DAT

The parameter specification will, so far, look like this:

{ REQ CH_DAT parameter is required
or this:

{ OPT CH_DAT parameter is optional
You also know the name of the Character Data Type (either an existing one or one that you
have created) that matches the specification of your parameter.
So to complete the parameter specification, add a third column containing the name of the
Character Data Type and close the specification with a closing curly bracket.
For instance, if the parameter is required, and the Character Data Type used is
sMinMaxVolts, then the parameter specification is:

{ REQ CH_DAT sMinMaxVolts }

14 SPECIFY COMMAND PARAMETERS 77

 REMOVE UNUSED DECLARATIONS 79

15 Remove Unused Declarations
The template file(s) that you used as the basis for your own cmds.c and cmds.h files may
have included some definitions and structures that are not needed by your command set.
For instance, you may not need to support Joules as base units, or you do not require the
Character Data Sequence BUS|IMMediate|EXTernal.

These unused definitions will be taking up ROM space on your platform, but apart from that
they do no harm. If you want to you may delete unused definitions from the cmds.c and
cmds.h files. You may like to follow these tips:

• Try compiling the cmds.c module before removing any of the unused components –
the compiler’s output report may include a list of unused items that you can delete
without causing problems.

• Take a backup of cmds.c and cmds.h before deleting any items, in case you find you
do need them after all.

15

 INTEGRATE INTO YOUR SOURCE CODE 81

16 Integrate into Your Source Code

16.1 Compiler Requirements
Before we discuss the steps to integration, you will need to carry out a few basic steps to
physically include JPA-SCPI Parser in your project.
1) Add these files to your project’s build list:

• scpi.c
• cmds.c

2) If you need to include complier/platform-specific header files in these files in order for
them to compile on your system, then open scpi.c and cmds.c for editing. Near the top of
each file is a list of header files and a comment saying “Include any headers required by
your compiler here”. Insert any #include’s required into the files.

3) scpi.c implements its own versions of 4 functions that are available in standard C
libraries: strlen(), tolower(), islower(), and isdigit(). If you want, you can
remove these function definitions from scpi.c. Include the required C libraries in your
project. You will also need to add the appropriate #include’s to scpi.c.

4) Open cmds.h. It includes definitions such as ULONG_MAX that tell JPA-SCPI Parser the
maximum value that can be represented by different C variable types on your platform.
Adjust these values to match your compiler/platform. Alternatively, you can comment out
(or delete) those lines and instead include the standard C library header file limits.h in
cmds.h – it includes the definitions required here.

5) Any of your own modules that require access to JPA-SCPI Parser’s Access Functions or
variable types need to include these header files, in this order:
#include “cmds.h”
#include “scpi.h”

16.2 Integration Overview
When using JPA-SCPI Parser to interpret commands received on your instrument’s
communications port, the process is this:
1) When a command line terminator is received in the input buffer of the communication’s

port, copy the contents of the input buffer into a character array for parsing

2) Call SCPI_Parse() Access Function to parse the first command in the command line

3) If the command is valid then:
a) Validate the numeric suffices in the command, if any
b) Retrieve the parameters, if any, using JPA-SCPI Parser Access Functions
c) Validate the parameters
d) If the parameters are valid then perform the action required by the command

4) If an error has occurred then handle it
5) If no error has occurred and there are more commands in the command line then repeat

steps 2 onwards for each subsequent command

16

16.3 Copy Command Line from Input Buffer
The command line comprises all the characters in the input buffer up to the command line
terminator. Depending on your communications protocol, the terminator could be the EOI
signal (if GPIB), a Carriage Return character, a Linefeed character or a combination of
these. In fact whatever your instrument allows as a terminator is acceptable.
When a command line terminator is received, the parsing of the command line can begin. In
order to allow the input buffer to be used during parsing, the first job is to copy the contents
of the input buffer up to the terminator into a character array for parsing.
When copying the input buffer into the character array, the array must be terminated with
the null character (‘\0’). If the input buffer uses a terminator character (such as carriage
return), then the null character can either replace this character or be placed after it – JPA-
SCPI Parser ignores carriage return and linefeed characters (it treats them, and all ASCII
characters with codes 1-32, as white-space).
Parser Limitations: By default, the command line cannot be more than 255 characters long.
This can be increased if you wish. See 12.5 Option to Support More than 255 Commands
for details.

16.4 Parsing Loop
Now we have a copy of the command line to be parsed, we can parse its contents.
A command line may contain one command or it may contain many. JPA-SCPI Parser
parses a single command at a time, returning a pointer to the start of the next command in
the command line to be parsed (if there is one).
When parsing a command line, the commands are carried out in order. If an error occurs, it
is usual to stop parsing the command line – subsequent commands are ignored. This is the
approach we will illustrate here.
The code varies slightly depending on whether support for Numeric Suffices is enabled, i.e.
if SUPPORT_NUM_SUFFIX is #defined. By default it is #defined – see section “12 Optional
Support Features” for more information. Follow the section below that matches your
configuration.

16.4.1 When SUPPORT_NUM_SUFFIX is #defined
Note: Code that is present because SUPPORT_NUM_SUFFIX is #defined in shown below
with a grey background.

char SInput[256]; // Copy of command line
char *SCmd; // Pointer to command to be parsed
UCHAR Err; // Returned Error code
BOOL bResetCmdTree; // Resets command tree if TRUE
SCPI_CMD_NUM CmdNum; // Returned number of matching cmd
struct strParam sParams[MAX_PARAMS]; // Returned parameters
 unsigned int uiNumSuf[MAX_NUM_SUFFIX]; // Returned numeric suffices
 UCHAR NumSufCnt; // Returned numeric suffix count
 :
copy input buffer into SInput[], with null terminator
 :
// Parsing Loop
SCmd = &(SInput[0]); // Point to first command in line
bResetCmdTree = TRUE; // Reset tree for first command

82 JPA-SCPI PARSER – USER MANUAL

do // Loop for each command in line
{
Err = SCPI_Parse (&SCmd, bResetCmdTree, &CmdNum, sParams,
 &NumSufCnt, uiNumSuf);
 // Parse command
if (Err == SCPI_ERR_NONE) // If command is valid
{
// Dispatch Table
switch (CmdNum)
{
case 0: command_handler_0 (sParams); break;
case 1: command_handler_1 (); break;
case 2: command_handler_2 (sParams, NumSufCnt, uiNumSuf); break;
:

}
}
else // If command is invalid
{
 switch (Err)
{
case SCPI_ERR_TOO_MANY_NUM_SUF: handle too many numeric
 suffices in command; break;
case SCPI_ERR_NUM_SUF_INVALID: handle invalid numeric suffix;
 break;
case SCPI_ERR_INVALID_VALUE: handle invalid value in list; break;
case SCPI_ERR_INVALID_DIMS: handle invalid dimensions
 in channel list entry; break;
case SCPI_ERR_PARAM_OVERFLOW: handle overflow; break;

 case SCPI_ERR_PARAM_UNITS: handle wrong units; break;
 case SCPI_ERR_PARAM_TYPE: handle wrong param type; break;
 case SCPI_ERR_PARAM_COUNT: handle wrong param count; break;
 case SCPI_ERR_UNMATCHED_QUOTE: handle unmatched quote; break;
 case SCPI_ERR_UNMATCHED_BRACKET: handle unmatched bracket; break;
 case SCPI_ERR_INVALID_CMD: handle invalid command; break;
}

}
if (bResetCmdTree) // Don’t reset command tree
bResetCmdTree = FALSE; // after first command in line

} while (Err == SCPI_ERR_NONE); // Parse while no errors and
 // commands left to be parsed

16.4.2 When SUPPORT_NUM_SUFFIX is not #defined
char SInput[256]; // Copy of command line
char *SCmd; // Pointer to command to be parsed
UCHAR Err; // Returned Error code
BOOL bResetCmdTree; // Resets command tree if TRUE
SCPI_CMD_NUM CmdNum; // Returned number of matching cmd
struct strParam sParams[MAX_PARAMS]; // Returned parameters
 :
copy input buffer into SInput[], with null terminator
 :
// Parsing Loop
SCmd = &(SInput[0]); // Point to first command in line
bResetCmdTree = TRUE; // Reset tree for first command

16 INTEGRATE INTO YOUR SOURCE CODE 83

do // Loop for each command in line
{
Err = SCPI_Parse (&SCmd, bResetCmdTree, &CmdNum, sParams);
 // Parse command
if (Err == SCPI_ERR_NONE) // If command is valid
{
// Dispatch Table
switch (CmdNum)
{
case 0: command_handler_0 (sParams); break;
case 1: command_handler_1 (); break;
case 2: command_handler_2 (sParams); break;
:

}
}
else // If command is invalid
{
 switch (Err)
{
case SCPI_ERR_INVALID_VALUE: handle invalid value in list; break;
case SCPI_ERR_INVALID_DIMS: handle invalid dimensions
 in channel list entry; break;
case SCPI_ERR_PARAM_OVERFLOW: handle overflow; break;

 case SCPI_ERR_PARAM_UNITS: handle wrong units; break;
 case SCPI_ERR_PARAM_TYPE: handle wrong param type; break;
 case SCPI_ERR_PARAM_COUNT: handle wrong param count; break;
 case SCPI_ERR_UNMATCHED_QUOTE: handle unmatched quote; break;
 case SCPI_ERR_UNMATCHED_BRACKET: handle unmatched bracket; break;
 case SCPI_ERR_INVALID_CMD: handle invalid command; break;
}

}
if (bResetCmdTree) // Don’t reset command tree
bResetCmdTree = FALSE; // after first command in line

} while (Err == SCPI_ERR_NONE); // Parse while no errors and
 // commands left to be parsed

16.4.3 Variables
Let’s take a look at this code, whichever variety above you are looking at.

Starting at the top are the variable declarations used. SInput[256] contains the command
line copied from the input buffer. You can either use a variable like SInput, declared locally
within a function, or make it global to your module. You will need access to the contents of
this character array if any of your command specifications allow a String or Unquoted String
parameter – these types of parameter contain a pointer to the first character of the string in
the command line character array. For this reason, it is often best to declare the SInput
variable global to the module.

SCmd is a pointer used to point to the first character of the command to be parsed within the
command line. Initially it points to the first character in the command line.

Below this is variable Err. Err is declared as a UCHAR. UCHAR is #defined as unsigned
char in scpi.h, i.e. an unsigned 8-bit number. Err is used to contain the return value from
the calls to the JPA-SCPI Parser Access Functions. All Access Functions return one of a set
of common error codes. These are described later.

84 JPA-SCPI PARSER – USER MANUAL

bResetCmdTree is a Boolean variable. It is used to tell JPA-SCPI Parser whether or not to
reset the command tree. The command tree stores the current node that was reached by
the previous command – remember that SCPI commands use the level reached by the
previous command in the command line by default.

CmdNum is used to contain the returned number of the command specification that matches
the command parsed by SCPI_Parse(). This is then used in the dispatch table (described
later) to call the appropriate function to handle the command.

sParams[MAX_PARAMS] is used to contain the returned parameters of the matching
command. MAX_PARAMS is defined in cmds.h, by default it is 2. JPA-SCPI Parser Access
Functions can be used to allow easy conversion from parameter structures to C language
variable types, such as integers, doubles, etc. They are described later.

If SUPPORT_NUM_SUFFIX is #defined...

uiNumSufCnt[MAX_NUM_SUFFIX] is used to contain the returned numeric suffices
embedded in the command. MAX_NUM_SUFFIX is defined in cmds.h. Note, any numeric
suffix that is not entered will be given the default value by JPA-SCPI Parser.

NumSufCnt is used to hold the number of numeric suffices entered in the command
(including numeric suffices given the default value).

16.4.4 Parsing the Command Line
After the input buffer of the instrument’s communications port is copied into SInput, this
loop is in charge of parsing each command within it.

16.4.4.1 Calling SCPI_Parse()
The first job is to call the SCPI_Parse() function. This parses a single command in the
command line. The command within the command line to be parsed is pointed to by the first
parameter of SCPI_Parse(), SCmd in this case. SCPI_Parse() parses the command up
until the first command delimiter character, i.e. a semi-colon (;). SCPI_Parse() returns this
pointer so that it points to the first character in the next command. In this way, it is ready for
the next call to SCPI_Parse().

The second parameter in SCPI_Parse() is bResetCmdTree. If TRUE then the command
tree is reset, otherwise the command tree is not reset and the current node reached by the
previous command is maintained. bResetCmdTree is set to TRUE for the first command in
the command line – in SCPI, the command tree is always reset to the base node for each
new command line. For subsequent commands, bResetCmdTree is set to FALSE.

SCPI_Parse() parses the command pointed to by SCmd. If the command and its
parameters (if any) match any of the command specifications in the cmds.c file, then
SCPI_Parse() returns the SCPI_ERR_NONE code, to indicate a successful match. It also
returns the number of the matching command specification (via CmdNum) and the contents of
the commands parameters (in sParams).

If SUPPORT_NUM_SUFFIX is #defined...

SCPI_Parse() also returns the numeric suffices in the command (via uiNumSuf[])
and the number of numeric suffices returned (NumSufCnt).

16 INTEGRATE INTO YOUR SOURCE CODE 85

16.4.4.2 Dispatch Table
If a successful match exists then you now need to call the appropriate command handler
function in your code to handle that command. This process often uses a dispatch table. It
usually comprises a switch(CmdNum) table, as shown in the code above. For each
command number, call a function to handle that command. Any commands that accept
parameters will need their handler function to validate and use the parameters. These
functions therefore need to include sParams in their function parameters (e.g.
command_handler_0() and command_handler_2() in the code above.

If SUPPORT_NUM_SUFFIX is #defined...

If any of the command handler functions need to know the numeric suffix(ces) that
was/were entered, then you will also want to pass the uiNumSuf[] array, and possibly
NumSufCnt as well. For example, see the call to command_handler_2() in the code
above (section 16.4.1).

16.4.4.3 Handling Invalid Commands
Alternatively, if the command does not match a valid command, maybe because the
command keywords are invalid, or the parameters are the wrong type for the command
specification, then SCPI_Parse() will returns an error code instead of SCPI_ERR_NONE.

The error codes are caught within a switch (Err) table in the code above. It is then up to
you how you want to handle invalid command errors. A common way is to add the error
code to a FIFO error buffer. The error codes can be retrieved by the remote computer using
the SCPI command SYSTem:ERRor[:NEXT]?. Refer to the SCPI Standard for details.

There is one error code that is returned by SCPI_Parse() that is not actually an error:
SCPI_ERR_NO_COMMAND. This code is returned by SCPI_Parse() to indicate there was
no command to be parsed. This will occur:

• if the command line is empty or contains only whitespace and/or semi-colons

• if the last command in the command line has been parsed
The simplest way to handle this error code is to just exit the parsing loop, as performed in
the example code above using the line while(Err == SCPI_ERR_NONE). In addition, if
SCPI_ERR_NO_COMMAND is returned by SCPI_Parse() you should not add it to your error
buffer.

16.5 Command Handler Functions
As described above, each command in the command specification requires a command
handler function. This function:

• Retrieves and validates the numeric suffix(ces) in the command (if numeric suffices
are supported and validation is required)

• Checks the types of command parameters (if required)

• Converts the command parameters (if any) into C language variables

• Validates the parameters (if any)

• Carries out the appropriate actions for the command

86 JPA-SCPI PARSER – USER MANUAL

The actual code used depends on what your command does and what types of parameter it
can take. In general though, the steps are always the same.

Parameters returned by the SCPI_Parse() function are stored in an array of struct
strParam structures. JPA-SCPI Parser provides Access Functions that make conversion of
the parameters into standard C variable types easy. Alternatively you can access the
elements of the structure and its related structures directly – information about the structures
is given in the Design Notes document.

16.5.1 Numeric Suffices
If your system supports numeric suffices (i.e. SUPPORT_NUM_SUFFIX is #defined) and the
command takes one or more numeric suffix, then you will want to retrieve the numeric
suffix(ces) entered and check they are valid.

SCPI_Parse() returns an array of numeric suffices (uiNumSuf[]) and the number of
numeric suffices in the command (NumSufCnt). Starting at element 0, the parser populates
an element of uiNumSuf[] each time it encounters a ‘#’ symbol in the command
specification (or in the character data specification of a parameter). If the user has not
entered a numeric suffix, then the value is taken as the default value
(NUM_SUF_DEFAULT_VAL).

For instance, if the command specification is
OUTPut#:RELay# {INTernal|EXTernal#}

and the command entered is

OUTP2:REL EXT3
then SCPI_Parse() will return these values:
NumSufCnt==3

uiNumSuf[0]==2, uiNumSuf[1]==1 (assuming default value of 1), uiNumSuf[2]==3

But, for the same command specification, if the command entered is
OUTP3:REL2 INT

then SCPI_Parse() will return these values:
NumSufCnt==2

uiNumSuf[0]==3, uiNumSuf[1]==2

Note in this second case that, since the Character Data entered (INTernal) did not take a
numeric suffix, then the number of numeric suffices returned is one less.
That was somewhat of an extreme example; in most cases you will only have one or maybe
two numeric suffices that can be entered, making your validation of them easier.
Since you know the command specification for the command being handled, your code
knows what each numeric suffix in the command relates to, whether it is an output channel
number, the number of an external trigger source or whatever. You can therefore validate
and use the numeric suffices as you require in your command handler function.

JPA-SCPI Parser does include basic range checking for numeric suffices.
SCPI_Parse() checks that the numeric suffices entered are all within range of
NUM_SUF_MIN_VAL to NUM_SUF_MAX_VAL. If any are outside that range (and are not
equal to NUM_SUF_DEFAULT_VAL), then it returns error code
SCPI_ERR_NUM_SUF_INVALID.

16 INTEGRATE INTO YOUR SOURCE CODE 87

16.5.2 Parameter Types
If you are handling a command that has one or more optional parameters, you will need to
know which parameters were entered. If you are handling a command that includes a
parameter of type Character Data with Alternative Type then you will need to know whether
the parameter was entered as Character Data or another type. If your command includes a
Numeric Value, you may need to know if the number was positive or negative, and whether
it was integer value.
In all these cases, you can call this Access Function:

SCPI_ParamType(..)

SCPI_ParamType() takes a parameter structure, as returned by SCPI_Parse() and tells
you:

• The type of parameter entered, or no parameter if not entered

• If the type is Numeric Value, then whether the value is positive/negative and
integer/real

In your command handler function, you could include this code:
UCHAR Err;
enum enParamType ePType;
UCHAR NumSubtype;
Err = SCPI_ParamType (&(sParams[0]), &ePType, &NumSubtype)

where sParams[0] is the first parameter returned by SCPI_Parse().

Err will be SCPI_ERR_NONE if no errors occurred, otherwise it will be an error code. See
Appendix B for more information.

If Err is SCPI_ERR_NONE, then ePType will contain the type of parameter:

ePType Meaning
P_NONE No parameter was entered
P_NUM Numeric Value
P_BOOL Boolean
P_CH_DAT Character Data
P_STR String
P_UNQ_STR Unquoted String
P_NUM_LIST Numeric List
P_CHAN_LIST Channel List
P_EXPR Expression

If the parameter was optional, then P_NONE indicates that the parameter was not entered.

If the parameter is type Numeric Value (ePType==P_NUM) then the other parameter of
SCPI_ParamType(), NumSubType, contains further information.

NumSubType comprises 8 bits:

Bit Number Use
7-2 Not Used
1 1=Real number, 0=Integer
0 1=Negative number, 0=Positive

88 JPA-SCPI PARSER – USER MANUAL

By seeing which bits are set, you can determine which attributes the Numeric Value
parameter has. To assist this, two #define’s are present in scpi.h:

#define SCPI_NUM_ATTR_NEG (1)
#define SCPI_NUM_ATTR_REAL (2)

You can therefore use this kind of code to determine the attributes of a Numeric Value
parameter:

UCHAR Err;
enum enParamType ePType;
UCHAR NumSubtype;
Err = SCPI_ParamType (&(sParams[0]), &ePType, &NumSubtype)
if (Err == SCPI_ERR_NONE)
{
 if (ePType == P_NUM) // Numeric Value
 {
 if (NumSubType & SCPI_NUM_ATTR_NEG)
 // Value is negative
 else
 // Value is positive
 if (NumSubType & SCPI_NUM_ATTR_REAL)
 // Value is real
 else
 // Value is an integer
 }
}

where sParams[0] is the first parameter returned by SCPI_Parse().

16.5.3 Converting Parameters to C Variables
Once you know the types of parameters returned (and which optional parameters were
entered), you will want to convert the parameters into native C variable types.
The conversion performed depends on the type of parameter returned.

16.5.3.1 Converting a Numeric Value Parameter
There are 5 Access Functions for converting a Numeric Value parameter to a C variable.
Each one returns a different type of C variable.

Access Function Returns
SCPI_ParamToUnsignedInt() unsigned int
SCPI_ParamToInt() int
SCPI_ParamToUnsignedLong() unsigned long
SCPI_ParamToLong() long
SCPI_ParamToDouble() double

Remember to check the attributes of the Numeric Value if you need to before calling one of
these functions. For instance, if the value entered was negative and you only allow positive
numbers for this parameter, then you know immediately that the value is invalid and do not
need to perform this conversion. The same procedure applies if you only allow integers for
the value and the value entered was real.

16 INTEGRATE INTO YOUR SOURCE CODE 89

Say you want to convert the Numeric Value entered into a variable of type unsigned long.
You could use code like this:

UCHAR Err;
unsigned long ulVal;
 :
Err = SCPI_ParamToUnsignedLong (&(sParam[1]), &ulVal);

 where sParam[1] is the second parameter returned by SCPI_Parse().

The function will return the value of the parameter in ulVal.

Whatever Access Function you are using to convert a Numeric Value parameter, you should
also check the value of Err. It will be SCPI_ERR_NONE if the conversion went ok.
Otherwise, Err indicates a problem with the conversion:

Err Description
SCPI_ERR_PARAM_TYPE Parameter is not type Numeric Value
SCPI_ERR_OVERFLOW Value of parameter was too big to be contained in the

return value, e.g. parameter has value 123456 and
return value was type int which has a maximum value
of 32767 (if int is 16-bit)

Note: Err will be SCPI_ERR_NONE if you convert a negative value parameter to an
unsigned C variable, e.g. using SCPI_ParamToUnsignedInt(). The value returned will
be the value with the negative sign ignored. If you wish to disallow negative numbers, then
check the attributes of the Numeric Value first, as discussed earlier.
There is also an Access Function for retrieving the units of the Numeric Value parameter.
Normally you will not need to call this if, for example, only Volts are allowed then all values
returned will be in volts. If you allow one of more types of units, then you will want to know
what units were entered.
The Access Function to use is:

SCPI_ParamUnits(..)

Your code could look like this:
UCHAR Err;
enum enUnits eUnits;
 :
Err = SCPI_ParamUnits (&(sParam[0]), &eUnits);

 where sParam[0] is the first parameter returned by SCPI_Parse().

Err will be SCPI_ERR_NONE if no errors occurred. See Appendix B for a list of error codes
and more information.

If Err is SCPI_ERR_NONE then eUnits will contain the type of units entered, or U_NONE if
no units were entered. The types of units are defined in your cmds.h file.

16.5.3.2 Converting a Boolean Parameter
This Access Function is used to convert a Boolean parameter into a C variable of type
BOOL:

SCPI_ParamToBOOL(..)

90 JPA-SCPI PARSER – USER MANUAL

In code, you can use it like this:
UCHAR Err;
BOOL bVal;
 :
Err = SCPI_ParamToBool (&(sParam[0]), &bVal);

 where sParam[0] is the first parameter returned by SCPI_Parse().

If Err is SCPI_ERR_NONE then the conversion was ok and bVal will contain the Boolean
value of the parameter, either 0 (OFF) or 1 (ON).

If Err is not SCPI_ERR_NONE then an error occurred. See Appendix B for a list of error
codes and more information.

16.5.3.3 Converting a Character Data Parameter
This Access Function is used to convert a Character Data parameter into a number
representing the item in the Character Data Sequence that was entered:

SCPI_ParamToCharDataItem(..)

For example, say that the first parameter returned was type Character Data. By using the
code below, you can retrieve the number of the item entered.

UCHAR Err;
UCHAR ItemNum;
 :
Err = SCPI_ParamToCharDataItem (&(sParam[0]), &ItemNum);
if (Err == SCPI_ERR_NONE)
{
 // ItemNum contains number of item entered
}

 where sParam[0] is the first parameter returned by SCPI_Parse().

Since you know the Character Data Sequence used for that parameter (it is in your cmds.c
specifications), you can determine what choice was made, e.g. if your sequence is
BUS|IMMediate|EXTernal, and the item number returned was 1 then the item entered was
IMMediate (item numbers start at 0 for the first item in the list).

If Err is not SCPI_ERR_NONE then an error occurred. See Appendix B for a list of error
codes and more information.

16.5.3.4 Converting a String Parameter or an Unquoted String Parameter
If a parameter returned is type String or Unquoted String, you will want to know the contents
of the string entered. In both cases, use this Access Function:

SCPI_ParamToString(..)

In code, it can be used like this:
UCHAR Err;
char *SString;
SCPI_CHAR_IDX Len;
char Delimiter;
 :
Err = SCPI_ParamToString (&(sParam[1]), &SString, &Len,
&Delimiter);

16 INTEGRATE INTO YOUR SOURCE CODE 91

if (Err == SCPI_ERR_NONE)
{
 // SString is a pointer to the string entered
 // Len contains the length of the string
 // Delimiter contains the character used to delimit the
 // string (only applies to quoted strings)
}

 where sParam[1] is the second parameter returned by SCPI_Parse().

As always, Err will be SCPI_ERR_NONE if the conversion was ok, otherwise it will contain
an error code. See Appendix B for a full list of error codes and more information.

If Err is SCPI_ERR_NONE then 3 parameters are returned:

• The first return parameter is SString. This is a pointer to the start of the string
entered. It will always point to a character within the array of characters used in the
call to SCPI_Parse() that parsed this parameter (e.g. the array of characters
SInput, if the code used is as shown in “16.4 Parsing Loop”). For this reason, the
array of characters used must be not be over-written or discarded until you have
used the string parameter.
Note that, for parameters of type String (i.e. quoted strings), this parameter points to
the first character after the delimiting quote.

• The second return parameter is Len. This contains the length of the string entered
as a number of characters. This is required as the string is not null-terminated.
Note that, for parameters of type String (i.e. quoted strings), the value of this
parameter excludes the delimiting quotes.

• The third return parameter is Delimiter. This is only used when the parameter
being converted is type (quoted) String. Delimiter will contain the character used
to delimit the string, either single quote (′) or double quote ("). This is useful to
know, since the same quote may also appear within the string. If the string is
delimited by double quotes, then the user can represent a double quote within the
string by entering it twice, for example, the string "Say ""Hello"" to John".
This represents the text:

Say “Hello” to John
In the same way, a single quote can be represented in a string delimited by single
quotes by entering it twice. Note that, if the quote within the string is not the same
type as the delimiting quote, then it does not need to be doubled up in this way.
So when you come to interpret the (quoted) string, remember to check the contents
of Delimiter, and if you come across the 2 adjacent quote characters of the same
type within the string, then treat it as a single character.

You may wish to use a call to the C string library’s function strncpy(..) in order to copy
the string into your own variable. Once copied, you can then re-use or free up the array of
characters used in the call to SCPI_Parse().

16.5.3.5 Converting a Numeric List Parameter
A Numeric List parameter can contain a variable number of entries. Each entry can be either
a single value, or a range of values, represented by a first value and a last value separated
by a colon (e.g. 2.5:7.9). To retrieve those values and convert them into C variables,
requires these steps:

92 JPA-SCPI PARSER – USER MANUAL

1. Retrieve an entry from the numeric list
2. Convert the entry’s contents into C variable type(s)
3. Repeat the steps for each of the entries in the numeric list

To retrieve a single entry from the numeric list, use the Access Function
SCPI_GetNumListEntry(...)

It can be used like this:
 UCHAR Err;

 UCHAR Index = 0;

 BOOL bRange;

 struct strParam sFirst, sLast;

 Err = SCPI_GetNumListEntry (&(sParam[0]), Index, &bRange,
 &sFirst, &sLast);

 where Index is the number of the entry in the numeric list to retrieve (the first entry is 0)

 and where sParam[0] is the first parameter returned by SCPI_Parse().

Err will be SCPI_ERR_NONE if no errors occurred. If Err is SCPI_ERR_NO_ENTRY, then
there is no entry with the given Index number. This can be used to limit a loop that is
retrieving each entry from a numeric list. For other error codes, see Appendix B.

If Err is SCPI_ERR_NONE then 3 parameters are returned:

• bRange. This is returned as TRUE if the entry in the numeric list is a range (e.g.
1:23), or FALSE if the entry is a single number (e.g. 15).

• sFirst is a returned parameter structure. If bRange is TRUE, then it contains the
first value in the range of the entry. If bRange is FALSE then sFirst contains the
only value in the entry. Note, the value is returned as a parameter structure rather
than a numeric C variable type since you may want to use the value as an integer, a
double-precision floating-point number or whatever. This allows total flexibility in
retrieving the values entered.

• sLast is a returned parameter structure. If bRange is TRUE, then it contains the last
value in the range of the entry. If bRange is FALSE then sLast is not used.

Now you have retrieved the contents of the entry in sFirst (and sLast if bRange is
TRUE), you can convert the parameters into numeric C variables as you require. For
example if you want to convert them into doubles then you can use this code:

 UCHAR Err;

 double fdValFirst, fdValLast;

 Err = SCPI_ParamToDouble (&sFirst, &fdValFirst);

 if (bRange)

 Err = SCPI_ParamToDouble (&sLast, &fdValLast);

For example, using this code, if the entry was 1:23, then fdValFirst would be 1 and
fdValLast would be 23.

Use whatever SCPI_ParamTo...() function you require for the type of numeric variable
you want, e.g. SCPI_ParamToInt(), etc.

In addition, if you want to, you can call SCPI_ParamToString() to return the string of
characters that make up the numeric list. See “B.11 SCPI_ParamToString()” for information.

16 INTEGRATE INTO YOUR SOURCE CODE 93

16.5.3.6 Converting a Channel List Parameter
A Channel List parameter can contain a variable number of entries. Each entry can be either
a single value, a multi-dimension value, a range of values, represented by a first value and a
last value separated by a colon (e.g. 2.5:7.9), or even a range of multi-dimension values
(e.g. 1!2:7!5). To retrieve those values and convert them into C variables, requires these
steps:

1. Retrieve an entry from the channel list
2. Convert the entry’s contents into C variable type(s)
3. Repeat the steps for each of the entries in the channel list

To retrieve a single entry from the channel list, use the Access Function
SCPI_GetChanListEntry(...)

It can be used like this:
 UCHAR Err = SCPI_ERR_NONE;

 UCHAR Index = 0;

 UCHAR DimCnt = MAX_DIMS;

 BOOL bRange;

 struct strParam sFirst[MAX_DIMS], sLast[MAX_DIMS];

 Err = SCPI_GetChanListEntry (&(sParams[0]), Index, &DimCnt,
 &bRange, sFirst, sLast);

where Index is the number of the entry in the numeric list to retrieve (first entry is 0),
where DimCnt is the maximum dimensions allowed in an entry, and where sParam[0]
is the first parameter returned by SCPI_Parse().

Err will be SCPI_ERR_NONE if no errors occurred. If Err is SCPI_ERR_NO_ENTRY, then
there is no entry with the given Index number. This can be used to limit a loop that is
retrieving each entry from a channel list.

Err will be SCPI_ERR_INVALID_DIMS if any entries in the channel list have too many or too
few dimensions (according to the minimum and maximum limits set in the Channel List Type
of the parameter specification). For other error codes, see Appendix B.

If Err is SCPI_ERR_NONE then 4 parameters are returned:

• DimCnt contains the number of dimensions present in the entry. Note that if the
entry is a range, then the dimensions of the first and last values in the range must be
the same.

• bRange. This is returned as TRUE if the entry in the numeric list is a range (e.g. 1:23
or 3!2:4!7), or FALSE if the entry is a single value (e.g. 15 or 12!4!7).

• sFirst[] is an array of returned parameter structures. Each element of the array
corresponds to one of the dimensions of the entry. For example, if there is one
dimension (DimCnt==1) then only sFirst[0] will be populated. If the entry has two
dimensions (DimCnt==2) then sFirst[0] will contain the value of the first
dimension and sFirst[1] will contain the value of the second dimension.

If bRange is TRUE, then each of these sFirst parameter structures contains the
first value in the range of the entry. If bRange is FALSE then the sFirst element
contains the only value in the entry. Note, the value is returned as a parameter
structure rather than a numeric C variable type since you may want to use the value

94 JPA-SCPI PARSER – USER MANUAL

as an integer, a double-precision floating-point number or whatever. This allows total
flexibility in retrieving the values entered.

• sLast[] is an array of returned parameter structures. The elements of the array are
used for each dimension, in the same way as sFirst[]. If bRange is TRUE, then
the element contains the last value in the range of the entry. If bRange is FALSE
then sLast[] is not used.

Now you have retrieved the contents of the entry in sFirst[] (and sLast[] if bRange is
TRUE), you can convert the parameters into numeric C variables as you require. For
example if you want to convert them into doubles then you could use this code:

 UCHAR Dim;

double fdValFirst[MAX_DIMS], fdValLast[MAX_DIMS];

 for (Dim = 0; Dim < DimCnt; Dim++)

 {

 Err = SCPI_ParamToDouble (&(sFirst[Dim]), &(fdValFirst[Dim]));

 if (bRange)

 Err = SCPI_ParamToDouble (&(sLast[Dim]), &(fdValLast[Dim]));

 }

You can use whatever SCPI_ParamTo...() function you require for the type of numeric
variable you want, e.g. SCPI_ParamToInt(), etc.

16.5.3.6.1 A Few Conversion Examples
Channel Lists can be confusing, particularly if entries are ranges rather than single values,
and/or have multiple dimensions.
Here are a few example entries, and how they convert to C variables using the code above.

General Info Returned Values
Entry Dimensions Range? bRange sFirst[] sLast[]
15.7 1 No FALSE sFirst[0]==1 N/A
12!14 2 No FALSE sFirst[0]==12

sFirst[1]==14
N/A

13.4:17.6 1 Yes TRUE sFirst[0]==13.4 sLast[0]==17.6
1!4:2!17 2 Yes TRUE sFirst[0]==1

sFirst[1]==4
sLast[0]==2
sLast[1]==17

1.5!3.7!4.2:3.4!5.6!7.8 3 Yes TRUE sFirst[0]==1.5
sFirst[1]==3.7
sFirst[2]==4.2

sLast[0]==3.4
sLast[1]==5.6
sLast[2]==7.8

In addition to this approach, you can perform the parsing yourself if you wish, by calling
access function SCPI_ParamToString() to return the string of characters that make up
the channel list. See “B.11 SCPI_ParamToString()” for information.
For more information on channel lists refer to section “A.3.8.7 Channel List” and look at the
SCPI Standard (V1999.0 section 8.3.2).

16.5.3.7 Converting an Expression Parameter
If a parameter returned is type Expression then you can retrieve the contents of the
expression in string form for your own use. It uses the same Access Function as for String
parameters:

16 INTEGRATE INTO YOUR SOURCE CODE 95

SCPI_ParamToString(..)

In code, it can be used like this:
UCHAR Err;
char *SExpr;
SCPI_CHAR_IDX Len;
char Dummy;
 :
Err = SCPI_ParamToString (&(sParam[1]), &SExpr, &Len, &Dummy);
if (Err == SCPI_ERR_NONE)
{
 // SString is a pointer to the string entered
 // Len contains the length of the string
 // Dummy is not used
}

 where sParam[1] is the second parameter returned by SCPI_Parse().

As always, Err will be SCPI_ERR_NONE if the conversion was ok, otherwise it will contain
an error code. See Appendix B for a full list of error codes and more information.

If Err is SCPI_ERR_NONE then two parameters are returned:

• The first return parameter is SExpr. This is a pointer to the start of the expression
string entered. It will always point to a character within the array of characters used
in the call to SCPI_Parse() that parsed this parameter (e.g. the array of characters
SInput, if the code used is as shown in “16.4 Parsing Loop”). For this reason, the
array of characters used must be not be over-written or discarded until you have
used the string parameter. The first character pointed to will always be the opening
bracket (() of the expression.

• The second return parameter is Len. This contains the length of the expression
string as a number of characters. This is required as the string is not null-terminated.
Note, Len includes the terminating closing bracket ()).

• The third return parameter is Dummy. This is not used when the Access Function is
used for parameters of type Expression.

You may wish to use a call to the C string library’s function strncpy(..) in order to copy
the string into your own variable. Once copied, you can then re-use or free up the array of
characters used in the call to SCPI_Parse().

16.5.4 Validate Parameters
Now that the parameters have been converted into native C variable types, you can perform
whatever validation checks you need, e.g. checking that a value entered is within allowable
range.

16.5.5 Act on Command
The final job of your command handler function is to perform some action(s) according to
the command entered and the values of the parameters. JPA-SCPI Parser has provided
your code with this information. What your code does now depends on your system’s
design. For instance, you may simply perform an action straight away, or you may queue a
task to be carried out when all previous tasks have been performed.

96 JPA-SCPI PARSER – USER MANUAL

 ADVANCED TOPICS 97

17 Advanced Topics
You may have a specific need for your SCPI parser, but are unsure how to go about
implementing it. The sections here deal with certain situations you may encounter.

17.1 How can I Support Nested Optional Parameters?
In some cases you may have nested square brackets around parameters in your SCPI
notation, e.g.:

 CONF:CURRent:DC [{<range>|MIN|MAX} [, {<res>|MIN|MAX}]]

This allows commands to be entered such as:

CONF:CURR:DC
CONF:CURR:DC 1KV
CONF:CURR:DC MAX,100MV

In other words, the second parameter may only be entered if the first parameter is entered
as well.
What if the command was specified slightly differently in SCPI notation? i.e.:

 CONF:CURRent:DC [{<range>|MIN|MAX}] [, {<res>|MIN|MAX}]

In this case, parameter 2 may be entered without parameter 1, allowing commands such as:

CONF:CURR:DC
CONF:CURR:DC 1KV
CONF:CURR:DC ,100MV
CONF:CURR:DC MAX,100MV

Notice the third command – this was not possible with the first form of SCPI notation.
JPA-SCPI Parser supports both forms of notation. In fact it does not distinguish between the
two. In both cases, parameter 1 and parameter 2 are both classed as optional. By default,
JPA-SCPI Parser will allow all the forms of command entry of the 2nd case, i.e. un-nested
square brackets.
If you want to enforce nested square brackets, i.e. the 1st case, then you can easily do so in
your code after the command has been parsed.

Use the SCPI_ParamType() Access Function to determine which parameters were
entered. Disallow commands where the second parameter was entered but the first
parameter was not.

17.2 How do I Support the UNIT Subsystem?
SCPI’s UNIT subsystem comprises a small set of commands for changing the default units
used when sending commands. For instance, take a look at this sequence of commands
sent:

UNIT:POWER DBM // sets default units for power levels to dbm

SOURCE:POWER:LEVEL 100 // sets output power level to 100dbm

UNIT:POWER V // sets default units for power levels to volts

17

SOURCE:POWER:LEVEL 100 // sets output power level to 100 volts

SOURCE:POWER:LEVEL 10W // sets output power level to 10 watts

The UNIT:POWer command changes the default units of any subsequent commands that
take parameters of power. Notice, though, the last command sent; even though default units
were set to Volts, the 10W over-rode this and set the power level to 10 watts.

The UNIT subsystem has lower-level nodes for setting other units as well as power, e.g.
CURRent, TIMe, VOLTage, etc. See the SCPI Standard for full details.

If you wish to support the UNIT subsystem, then you will need to carry out the following
steps:

17.2.1 Specify the UNIT Commands Supported
Look at the SCPI Standard and decide which commands in the UNIT subsystem you want
to support.
For each one you will need to specify a character data sequence and character data type for
the set of units allowed. For instance, if you are implementing the UNIT:POWer command,
you will need to specify a character data sequence such as this:
CHDAT_SEQ SeqPowerUnits[] = “W|V|DBNW|DBUW|DBMw|DBW”;

and a character data type such as this:
 CHDAT_TYPE sPowerUnits = { SeqPowerUnits, NO_DEF, ALT_NONE };

Now specify the command in the command keywords section of cmds.c, e.g.:
 “UNIT:POWer”,

And specify the command parameters specification in cmds.c, e.g.:
 {{ { REQ CH_DAT sPowerUnits },{ NOP } }},

17.2.2 Create Alternative Units
Create an entry in the Alternative Units section of cmds.c that lists all the possible units
allowed for the commands that will be affected by the UNIT command. For instance, if the
UNIT:POWer command allows units of W|V|DBNV|DBUV|DBMw|DBW, then you need this
alternative units list:
 ALT_UNITS_LIST eAltPower[] = {U_VOLT, U_WATT, U_DB_W, U_END};

Note, only the base units are needed in this list. If any of the base units are not yet defined,
define them in the usual way in cmds.h and specify the unit strings recognized in cmds.c, as
usual.

17.2.3 Create a Numeric Value Type for Unit Choices
Create a Numeric Value Type in cmds.c that will be used for parameters of commands that
are affected by the default units selection. The Numeric Value Type must not have any
default units. Continuing the example above, you could specify this Numeric Value Type:

NUM_TYPE sPower = { U_NONE, eAltPower, 0 };

17.2.4 Specifying Command Parameters
You can now specify the parameters for each of the commands affected by the UNIT
command. Use your Numeric Value Type in the same way as normal, for instance to specify

98 JPA-SCPI PARSER – USER MANUAL

a numerical parameter that uses the Numeric Value Type in the example above, your
parameter specification would be:
 { REQ NUM sPower }

17.2.5 Implementation Requirements
Your instrument now supports the UNIT subsystem commands required. You have also
specified the Numeric Value parameters of commands affected so that they can be entered
with any of the allowed units or no units at all.
If such a parameter is entered without units, the command should be used as if the units
specified by the last UNIT command were entered.

To keep track of the default units set by any UNIT commands you will need to maintain a
variable and update its value when a UNIT command is received.

17.3 How can I allow entry of either a Numeric Value or an
Expression Parameter?

As explained already, JPA-SCPI Parser has built-in support for parameters that can take
either Character Data or a different type of parameter. This makes use of the Alternative
Parameter Type feature of the Character Data parameter specification. But what if you want
to allow entry of either a Numeric Value or an Expression? There is no Alternative
Parameter Type facility here, but it is still easily possible.
In fact, the following approach applies to all types of parameter – it is possible to allow entry
of any combination of parameter types that you require.

This method makes use of the fact that JPA-SCPI Parser’s SCPI_Parse() function
attempts to match each command specification in turn, starting at the first entry in
sSpecCommand[] (cmds.c). When a valid match of both command keywords and
parameters is found, then the searching stops and the results of the match are returned.
To allow entry of different types of parameter to the same command:

1. Create duplicate entries of the command keywords in the SSpecCmdKeywords[]
array (cmds.c). You need as many entries as there are different types of parameter.

2. Create corresponding duplicate entries of the command specifications in
sSpecCommand[] (cmds.c), but with a different parameter type for each one.

For example, say we want to implement this command specification:
 APPLy[:SOURce]:VOLTage[:LEVel] <value>|<expression>

We first specify the command keywords twice:
const char *SSpecCmdKeywords[] =

{

 :

 “APPLy[:SOURce]:VOLTage[:LEVel]”, /* 15 */

 “APPLy[:SOURce]:VOLTage[:LEVel]”, /* 16 */

 :

}

17 ADVANCED TOPICS 99

We now create the two versions of the command specification, one for each type of
command parameter:

const struct strSpecCommand sSpecCommand[] =

{

 :

 {{ { REQ NUM sNoUnits } }}, /* 15 */

 {{ { REQ EXPR } }}, /* 16 */

 :

}

In your code that calls Access Function SCPI_Parse(), you can determine what type of
parameter was entered by checking the command specification number that it returns. For
example, in the example above, SCPI_Parse() would return 15 as the command
specification number if the user entered a numeric value, or 16 if the user entered an
expression.

Caution: Be careful how you order your command specifications. For instance, if you
wanted to allow both a Channel List and an Expression then ensure the command
specification in sSpecCommand[] for the Channel List is before the specification for the
Expression. This is because a Channel List parameter is also always a valid Expression
parameter, and SCPI_Parse()returns the first match that is valid. Put your more
specific type of parameter before your more general type of parameter (e.g. Unquoted
String, Expression).

17.4 Commands that allow Many Parameters
Occasionally you may want to support some commands that can take a long list of
parameters. You can specify up to 255 parameters, by defining MAX_PARAMS in cmds.h to
be the maximum number of parameters allowed by any command.
When supporting a large number of parameters for some commands, there are two issues:

• Extra Memory (ROM) usage

• Readability in cmds.c

17.4.1 Extra Memory Usage
JPA-SCPI Parser defines the parameters allowed by each command as an array of
structures (indices 0 to MAX_PARAM-1). This means that if MAX_PARAM is increased, the
memory used by JPA-SCPI Parser to store the parameter specifications will also increase.
This approach of fixed size arrays, rather than using dynamic structures, was taken in order
to allow the parameter specifications to be defined as constants and therefore able to reside
in ROM rather than RAM; RAM is often in short supply in embedded systems.

Each unused (NOP) parameter specification occupies 8 bytes of ROM1. So, for instance, if
your instrument supports 60 commands and 56 of them accept 1 or 2 parameters, but you

1 Figures obtained when compiling for a Microchip PIC18C452 with the HiTech C-18 compiler. Size
will vary with platform/compiler.

100 JPA-SCPI PARSER – USER MANUAL

need MAX_PARAMS to be 10, then you have 448 (56*(10-2)) unused parameters using
3.5KBytes of ROM1.
If the extra ROM space required is a significant problem you may wish to consider altering
the command specifications, e.g. instead of having commands that can accept a large
number of parameters, specify a command that takes a single parameter and adds it to a
queue of parameters.

17.4.2 Readability
In cmds.c, the section of code titled “Command Specs – Part 2: Parameters” contains a
table with sets of columns representing command parameters. The more command
parameters allowed, the more columns are required and the wider the table becomes.
If most of your commands accept 1 or 2 parameters, but a few commands accept, say, 10
parameters, then it is a waste of space to give each row of the table 10 full-size sets of
parameter columns.
One suggestion you may like to follow is this:
1 Subtract the maximum number of parameters accepted by most of your commands

from MAX_PARAM. For example, if most of your commands take 0, 1 or 2 parameters
and MAX_PARAM is 10, then this number is 10 – 2 = 8.

2 Define a symbol representing a set of NOP parameters. The number of NOP parameters
should be the same as the figure obtained in the previous step. If the number obtained
was 8, then, for example:
#define NOPx8 {NOP},{NOP},{NOP},{NOP},{NOP},{NOP},{NOP},{NOP}

3 Include this symbol after the parameter specifications for all the commands that take a
small number of commands. Effectively, this adds parameter columns to each
command without taking up much space in the row. For example, this command
specification only takes 1 parameter and MAX_PARAMS is defined as 10:
{{ {REQ CH_DAT sMinMaxOhms},{NOP },NOPx8 }},

4 For the commands that do allow many parameters, specify their parameters in the
normal way.

Often, the parameters of these types of commands are all the same type. If this is the
case, you could define a short symbol to represent the parameter type and then repeat it
in the command specification. For example:
#define VNUM {OPT NUM sVolts}

thus allowing you to use this command specification:
{{ VNUM,VNUM,VNUM,VNUM,VNUM,VNUM,VNUM,VNUM,VNUM,VNUM }},

Of course, these are all just ideas and you may prefer a different approach.

17 ADVANCED TOPICS 101

Appendices

 – AN INTRODUCTION TO SCPI 105

Appendix A – An Introduction to SCPI

A.1 Benefits of SCPI
The SCPI Standard was defined in order to provide a consistent command language for all
types of remotely programmable instruments. In doing so, SCPI aims to reduce significantly
the learning curve required by a technician to be able to program a particular instrument.
In addition, SCPI defines specific ‘core’ command sets for some types of instrument, such
as digital meters, signal switchers, etc. By defining a set of commands that must be
supported by certain types of equipment, it means that equipment from different
manufacturers should be almost interchangeable in an ATE system, for instance.
As well as saving time for the customer’s technicians to learn to control a new piece of
equipment, SCPI also has benefits for the instrument manufacturer too. It provides a
framework for defining the command set of an instrument and therefore saves time
designing a proprietary command structure and syntax. It may also save time supporting
the instrument, since many technicians are now familiar with SCPI and so will be able to
grasp the command syntax straight away.
In practice, many manufacturers choose to support a SCPI-like interface, rather than
implementing all of the features required by SCPI to claim SCPI compliancy. This is a valid
approach, since the look-and-feel of SCPI will again reduce the technician’s time spent
learning the instrument. Either approach, SCPI-like or full SCPI compliancy, is possible
using JPA-SCPI Parser.

A.2 Background to SCPI
SCPI was developed, and is still being expanded, by the SCPI Consortium
(http:\\www.scpiconsortium.org). It uses another standard IEEE488.2 as its basis, except
that SCPI is usable whatever the physical interface used (e.g. GPIB, RS232, USB, etc.),
whereas IEEE488.2 only applies to the GPIB (IEEE488.1) interface.

A.3 Command Structure
SCPI commands are hierarchical, being based on a tree system, for example:

The nodes of the tree represent command keywords, e.g. MEASure, VOLTage, DC?,
RESistance.

At the top of the trees are the root nodes, i.e. MEASure and SYStem. Under each root node
is what is known as a subsystem.

APPENDIX A

A command is formed by traversing the tree from a root node downwards until a node is
reached with no further nodes below it.
Instead of drawing command trees, SCPI uses a notation to represent command
specifications. When writing a command, the root node is written first, followed by the
keywords on the lower levels. Colons (:) are used to separate keywords on different levels of
the tree. For example:

MEASure:VOLTage:DC?

or:
SYSTem:LOCal

In addition, SCPI notation represents the levels of the tree by the horizontal indentation of
the keywords. The root node is in the leftmost position and so on. The commands
represented by the diagram above would be written as:

MEASure
 :VOLTage
 :DC?
 :AC?
 :RESistance?
 :CURRent
 :DC?
 :AC?

SYSTem
 :LOCal
 :REMote

A.3.1 Long and Short Form Keywords
You will see that many of the keywords above have upper and lowercase letters. This
system is used to represent the long form and short form of each keyword. The long form of
the keyword comprises all the characters of the keyword. The short form is made up of just
the characters in uppercase.

For instance, for MEASure above:

• Long Form is MEASURE

• Short Form is MEAS

Usually, the short form of a keyword comprises the first four letters. However, if the fourth
letter is a vowel, then the short form normally only uses the first 3 letters (e.g.
CALibration).

Commands sent to a SCPI instrument can include any combination of long and short form
keywords. For the command set above, all of these commands are valid:

MEASURE:VOLTAGE:DC?

MEAS:VOLT:DC?

MEASURE:VOLT:DC?

MEAS:VOLTAGE:DC?

106 JPA-SCPI PARSER – USER MANUAL

Note, that commands sent to a SCPI instrument are case-insensitive, for example, all of
these are also valid commands:

Meas:Volt:DC?

measure:Voltage:dc?

By convention, however, example SCPI commands are usually shown in uppercase form.
This is what we use in this manual.

A.3.2 Query Commands
Any SCPI commands that expect data to be sent back over the remote interface are termed
query commands. Such commands might request the voltage reading from a digital
voltmeter, or request the identity of the instrument.
All query commands end in a question mark. In the command set above, query commands
include:

MEASure:VOLTage:DC?

MEASure:RESistance?

etc.

A.3.3 Default Keywords
To shorten command entry, SCPI allows the use of default keywords (also known as default
nodes). These are keywords that can be left out of commands without affecting the meaning
of the command.
Default keywords are shown in command specifications by enclosing them in square
brackets. For example, the keywords of a command specification might be:

APPly:[SOURce:]CURRent[:LEVel][:IMMediate]:AMPLitude

In this case, valid forms of the command include:
APPLY:SOURCE:CURRENT:LEVEL:IMMEDIATE:AMPLITUDE

APP:CURR:AMPL

APP:CURRENT:LEV:AMPLITUDE

etc.
Notice how a colon can be included within the square brackets, in order that all possible
command constructs will contain keywords separated by a single colon.

A.3.4 Numeric Suffices
An instrument may have more than one outputs, trigger sources, etc. In order to specify
which of these channels a command is referring to, a numeric suffix can be added to the
command. For instance, a command to set the voltage range on a multi-channel
oscilloscope might be specified as:

[SENSe:]VOLTage[:DC]<channel#>:RANGe {<voltage>|MIN|MAX}

To set channel 1 to 200mV range, the user might enter this command as:

 VOLT1:RANG 200MV

To set channel 2 to 10V range, the user could enter this command:

 SENS:VOLT2:RANG 10V

APPENDIX A – AN INTRODUCTION TO SCPI 107

In addition, if the user does not enter a numeric suffix, then the value 1 is assumed. So in
this case, these two commands are equivalent, both setting channel 1 to the 2V range:

 VOLT1:DC:RANG 2V

 VOLT:DC:RANG 2V

Note, a command may have more than one numeric suffix. For example, this command
might be used to set the 2nd FM signal component of the 3rd output channel:

OUTP3:FM2

A.3.5 Compound Commands
It is possible to send compound commands to a SCPI instrument. Commands are separated
within a command line by a semi-colon (;). For example:

MEAS:VOLT:DC?;AC?

Note that the second command is not the full command but rather it uses the command tree
that was reached by the command before it. This shorthand is used by SCPI to reduce the
length of command lines.
If you need to use a command higher up the tree, then the second command must be
prefixed by a colon (:). This has the effect of resetting the command tree to the root. The
next command must therefore be in its full form, for example:

MEAS:VOLT:DC?;:MEAS:CURR:DC?

or:

MEAS:VOLT:DC?;:SYST:LOC

A.3.6 IEEE488.2 Common Commands
SCPI-compliant instruments must support a small set of IEEE488.2 common commands
defined in the IEEE488.2 standard. These include:

*RST

*CLS

IEEE488.2 common commands are used to reset the device, query its status registers, reset
the interface etc. For more information on these commands, refer to the SCPI Standard
and/or the IEEE488.2 Standard.

A.3.7 Parameters
Many commands take one or more parameters in order to provide the instrument with more
information, for example, the voltage level to set on a programmable power supply, or the
resolution to use on a digital resistance meter.
Parameters appear after the command keywords, separated from the keywords by a space
(no spaces are allowed within the command keywords).
If more than one parameter is allowed by the command, each parameter is separated by a
comma.
For example, a command might be sent as:

MEAS:VOLT? 1KV, 10MV

This would take a measurement from a digital voltmeter using a range of 1 kilovolts, and
with a resolution of 10 millivolts. The parameters are 1KV and 10MV.

108 JPA-SCPI PARSER – USER MANUAL

A.3.8 Types of Parameter
The different types of parameter allowed are:

A.3.8.1 Numeric Value
This is a number with or without units. It could represent a voltage, a frequency, a count –
anything that can be represented numerically.
Numeric Values can also include units after the number. These are usually optional.
In the example above, both 1KV and 10MV are Numeric Values.

A.3.8.1.1 Number Bases
SCPI allows Numeric Values to be entered in some number bases other than decimal:
binary, octal and hexadecimal.
When entering a number in one of these other bases, the number must be prefixed to
indicate the base.

Base Prefix Example
Binary #B #B11001010 = 20210
Octal #Q #Q107 = 7110
Hexadecimal #H #H10FF = 435110

Note: Negative and real (non-integer) numbers are only allowable in decimal.

A.3.8.2 Boolean
Sometimes, a parameter is required to set a state to on or off, e.g. auto-ranging on a digital
meter can either be on or off. Parameters that just require two states are known as
Booleans. Boolean parameters can be entered in a number of ways:

ON
OFF

1 // same as entering ON
0 // same as entering OFF

In addition, SCPI allows entry of a number where a Boolean parameter is permitted. The
number is converted to ON (1) or OFF (0) according to these rules:

• The sign of the number is ignored

• The number is rounded to the nearest integer, where .5 and above is rounded
upwards

• If the resulting number is zero, the Boolean parameter is OFF (0). Otherwise the
Boolean parameter is ON (1).

Boolean parameters can be specified with a default value, i.e. if the parameter is not entered
it is equivalent to the parameter being entered with the default value. In SCPI notation,
default values are shown in bold type (or you can use underline if bold type is not available).
For example:

{ON|OFF}

Here, the default value is ON.

APPENDIX A – AN INTRODUCTION TO SCPI 109

A.3.8.3 Character Data
SCPI also allows mnemonics to be entered as parameters. These are called Character Data
parameters. For example, the command specification:

TRIGger:SOURce {BUS|IMMediate|EXTernal}

The possible values of the Character Data parameter are: BUS, IMM, IMMEDIATE, EXT or
EXTERNAL.

In addition, Character Data choices are often combined with another type of parameter, e.g.
a Numeric Value or Boolean parameter.
For example, the specification of a command to set the resistance range of an ohmmeter
might be:

SENSe:RESistance:RANGe {<range>|MINimum|MAXimum}

This command allows entries such as:

SENS:RES:RANG 1000

SENS:RES:RANG 1GOHM

SENS:RES:RANG MAX

SENS:RES:RANG MINIMUM

As with Boolean parameters, Character Data parameters can have a default value. For
example:

{BUS|IMMediate|EXTernal}

Here, IMMediate is the default value used if the parameter is not entered.

A.3.8.4 String
Occasionally, an instrument may wish to accept a parameter made up of a string of
characters. For example, a command to display a text message on the instrument’s readout.
Strings in SCPI must be delimited by quotes (either double or single). For instance, a
command specification such as:

DISPlay:TEXT <message string>

would accept commands such as:

DISP:TEXT “hello world”

DISP:TEXT ‘Set function to “Volts”.’

In addition, JPA-SCPI Parser also supports a type we call Unquoted Strings. These function
exactly the same as normal strings except that they do not require quotes to delimit them.
Instead they are delimited by the commas (if any) that surround any parameter.
Unquoted Strings are useful for entry of passwords, for instance, to allow access to
calibration factors or maintenance functions.
For example, the command specification:

CALibration:SECure:CODE <code>

would accept entries such as:

CAL:SEC:CODE ABC123

A.3.8.5 Expression
SCPI defines various other types of parameter as expressions. These types include:

110 JPA-SCPI PARSER – USER MANUAL

• Numeric Expressions, e.g. (15*5+4)

• Numeric Lists, e.g. (1,2,3:7,9)

• Channel Lists, e.g. (@1!3,2!4:5!5)

• DIF (Data Interchange Format) Expressions
All these types of expression start with an opening bracket (‘(‘) and end with a closing
bracket (‘)‘).
Support for expressions is optional in SCPI. In fact most instrument do not support them.
DIF, for instance, is used for transferring large amounts of data from an instrument to a
computer, so is useful for logging instruments etc.
Numeric Lists and Channel Lists are amongst the most useful of the expressions, and these
are explained further below.

A.3.8.6 Numeric List
A numeric list is used to allow entry of a variable number of numeric values and ranges of
numeric values.
The format of a numeric list is:

(<entry>[,<entry>[,<entry>....]]])

where <entry> has the format:
<numeric value>|<numeric value>:<numeric value>

Ranges are indicated by the first number in the range and last number in the range
separated by a colon (:).

For example, a numeric list could be:

(5,7:17,20.5)

This numeric list has 3 entries: the value 5, the range 7 through to 17, and the value 20.5.
Note, the order of entries in a numeric list does not matter – there is no order implied by the
ordering of the entries in the numeric list.

A.3.8.7 Channel List
A channel list is used to specify a set of electrical ports on an instrument. The most common
use is for specifying signal routing and switching.
The format of a channel list is:

(@<entry>[,<entry>[,<entry>....]]])

where <entry> has the format:
<channel spec>|<channel spec>:<channel spec>

Ranges are indicated by the first number in the range and last number in the range
separated by a colon (:).

In addition to allowing ranges of values just like numerical lists, channel list entries can have
more than one dimension. A two dimensional entry comprises the value of the first
dimension followed by a ‘!‘ symbol followed by the value of the second dimension.

The specification for <channel spec> is:
<numeric value>[!<numeric value>[!<numeric value>....]]]

APPENDIX A – AN INTRODUCTION TO SCPI 111

For example, a channel spec could be:

 3

or 5!6
or 4!7!9
The number of ! symbols is one less than the number of dimensions, so the last example
above has 3 dimensions.
Dimensions are useful for representing a matrix of switches, for example. Say you have 10
rows and 12 columns of switches. The 1st dimension represents the row number and the
2nd dimension represents the column number:

Column
Row 1 2 3 4 5 6 7 8 9 10 11 12

1 1!1 1!2 1!3 1!4 1!5 1!6 1!7 1!8 1!9 1!10 1!11 1!12
2 2!1 2!2 2!3 2!4 2!5 2!6 2!7 2!8 2!9 2!10 2!11 2!12
3 3!1 3!2 3!3 3!4 3!5 3!6 3!7 3!8 3!9 3!10 3!11 3!12
4 4!1 4!2 4!3 4!4 4!5 4!6 4!7 4!8 4!9 4!10 4!11 4!12
5 5!1 5!2 5!3 5!4 5!5 5!6 5!7 5!8 5!9 5!10 5!11 5!12
6 6!1 6!2 6!3 6!4 6!5 6!6 6!7 6!8 6!9 6!10 6!11 6!12
7 7!1 7!2 7!3 7!4 7!5 7!6 7!7 7!8 7!9 7!10 7!11 7!12
8 8!1 8!2 8!3 8!4 8!5 8!6 8!7 8!8 8!9 8!10 8!11 8!12
9 9!1 9!2 9!3 9!4 9!5 9!6 9!7 9!8 9!9 9!10 9!11 9!12

10 10!1 10!2 10!3 10!4 10!5 10!6 10!7 10!8 10!9 10!10 10!11 10!12

A channel list to specify the switch at row 2, column 3 and row 9, column 11 would be:

 (@2!3,9!11)

As mentioned above you can also specify ranges in a channel list. For a single dimensional
channel list, this is exactly the same as a numeric list, e.g. for the range 5 through to 11,
then channel list would be:
 (@5:11)

But what happens when you want to specify a range of values in a 2 dimensional, or multi-
dimensional channel list?
For instance, say we wanted to specify the switches in the table below that are shown with
the grey background. We pick the first element in the group (3!3) and the last element (7!11)
and separate them with a colon (:), i.e.:

3!3:7!11

This tells the instrument to operate on all the switches in the area marked. Not only that, but
the order of operation is also implied by the order of the values in the range. In that example
it means start at 3!3, then 3!4 and so on until 3!11. Now continue with 4!3 through to 4!11,
and so on until 7!3 through to 7!11.
If we wanted to operate in reverse order then we would simply reverse the order of the
numbers, i.e.:

 7!11:3!3

112 JPA-SCPI PARSER – USER MANUAL

Unlike a numeric list, the order of operation with entries in a channel list is implied by the
order of the entries. For example:

(@1!3,2!5:3!1,4!4)

means operate in the following order:
1!3, 2!5, 2!4, 2!3, 2!2, 2!1, 3!5, 3!4, 3!3, 3!2, 3!1, 4!4

As well as numeric entries, SCPI allows channel lists to include alphanumeric entries such
as module specifiers and path names. These are not very common in use and are beyond
the scope of this introduction to SCPI. You may wish to refer to the SCPI Standard for more
information.

APPENDIX A – AN INTRODUCTION TO SCPI 113

 – JPA-PARSER ACCESS FUNCTIONS 115

Appendix B – JPA-Parser Access Functions
This appendix describes each of the JPA-SCPI Parser Access Functions.
Note: In-bound parameters are passed by value – they are not changed by the function.
Out-bound parameters are passed by reference – they may be changed by the function.
Parameters that are both in- and out-bound are also passed by reference. Their value is
used by the function and may be returned modified.

B.1 SCPI_Parse()
#ifdef SUPPORT_NUM_SUFFIX

UCHAR SCPI_Parse (char **pSInput, BOOL bResetTree, SCPI_CMD_NUM
*pCmdSpecNum, struct strParam sParam[], UCHAR *pNumSufCnt,
unsigned int uiNumSuf[]);

#else

UCHAR SCPI_Parse (char **pSInput, BOOL bResetTree, SCPI_CMD_NUM
*pCmdSpecNum, struct strParam sParam[]);

#endif

B.1.1 Description
Parses a command in the command line string. If a match is found then returns number of
matching command specification, and returns values and attributes of any parameters
entered. Also returns any numeric suffices entered (if numeric suffix support is enabled).

B.1.2 Parameters
Parameter In/Out-Bound? Description
pSInput In & Out Pointer to first character of the command line string to be

parsed. The string must be a null-terminated string of length
255 or less, unless the maximum command length has been
increased from the default. See 12.5 Option to Support
More than 255 Commands for details.
Parameter is returned modified, so as to point to first character
of the next command in the command line to be parsed.

bResetTree In If TRUE then the command tree is reset to the root node; if
FALSE then the command tree stays at the node set by the
previous command.
Note: Set this to TRUE when parsing the first command of the
 command line string, and FALSE otherwise.

pCmdSpecNum Out Pointer to returned number of the command specification that
matches the command in the command line string that was
parsed.
Value is undefined if no matching command specification is
found.

sParam[] Out Array [0..MAX_PARAM-1] of returned parameters containing
the parsed parameter values and attributes.
Contents of returned parameters are undefined if no matching
command specification is found.

pNumSufCnt Out Pointer to returned count of numeric suffices encountered

APPENDIX B

uiNumSuf[] Out Array [0..MAX_NUM_SUFFIX-1] of returned numeric suffices

B.1.3 Return Value
Value Meaning
SCPI_ERR_NONE OK. A matching command specification was found
SCPI_ERR_NO_COMMAND Error. There was no command to be parsed in the command

line string
SCPI_ERR_INVALID_CMD Error. The command keywords did not match any command

specification command keywords.
SCPI_ERR_PARAM_CNT Error. The command keywords match a command

specification but the wrong number of parameters was given
in the command.

SCPI_ERR_PARAM_TYPE Error. A parameter within the command does not match a
valid type of parameter for the command specification.

SCPI_ERR_PARAM_UNITS Error: A parameter within the command has the wrong type
of units for the command specification.

SCPI_ERR_PARAM_OVERFLOW Error. The command contains a parameter of type Numeric
Value that was too large to be stored internally. This occurs
if the value has an exponent greater than +/-43.

SCPI_ERR_UNMATCHED_BRACKET Error. The parameters in the command contain an
unmatched bracket.

SCPI_ERR_UNMATCHED_QUOTE Error. The parameters in the command contain an
unmatched single or double quote.

SCPI_ERR_TOO_MANY_NUM_SUF Error. Too many numeric suffices in the command to be
returned in uiNumSuf[].

SCPI_ERR_NUM_SUF_INVALID Error. One or more numeric suffix in the command is invalid,
e.g. out of range.

SCPI_ERR_INVALID_VALUE Error. One or more values in a numeric/channel list
parameter is invalid, e.g. floating point when not allowed

SCPI_ERR_INVALID_DIMS Error. One or more entries in a channel list parameter has
an invalid number of dimensions.

B.1.4 Example Code (SUPPORT_NUM_SUFFIX is not #defined)
char SCmdLine[256];
 :
UCHAR Err;
char *SCmd = SCmdLine;
BOOL bResetTree = TRUE;
SCPI_CMD_NUM CmdNum;
struct strParam sParams[MAX_PARAMS];
 :
do
{
 Err = SCPI_Parse (&SCmd, bResetTree, &CmdNum, sParams);
 :
 bResetTree = FALSE;
} while (Err == SCPI_ERROR_NONE);

116 JPA-SCPI PARSER – USER MANUAL

B.2 SCPI_ParamType()
UCHAR SCPI_ParamType (struct strParam *psParam, enum
enParamType *pePType, UCHAR *pNumSubtype);

B.2.1 Description
Returns the type of a parameter returned by SCPI_Parse(). If parameter is type Numeric
Value, then also returns its sub-type attributes.

B.2.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
pePType Out Pointer to returned type of parameter
pNumSubtype Out Pointer to returned parameter's sub-type attributes, if

parameter is type Numeric Value:
Bit Number Use
7-2 Not Used
1 1=Real number, 0=Integer
0 1=Negative number, 0=Positive

B.2.3 Return Value
Value Meaning
SCPI_ERR_NONE OK (always returned by this function)

B.2.4 Example Code
UCHAR Err;
enum enParamType ePType;
UCHAR NumSubtype;
Err = SCPI_ParamType (&(sParams[0]), &ePType, &NumSubtype)
if (Err == SCPI_ERR_NONE)
{
 if (ePType == P_NUM) // Numeric Value
 {
 if (NumSubType & SCPI_NUM_ATTR_NEG)
 // Value is negative
 else
 // Value is positive
 if (NumSubType & SCPI_NUM_ATTR_REAL)
 // Value is real
 else
 // Value is an integer
 }
}

where sParam[0] is the first parameter returned by SCPI_Parse().

APPENDIX B – JPA-PARSER ACCESS FUNCTIONS 117

B.3 SCPI_ParamUnits()
UCHAR SCPI_ParamUnits (struct strParam *psParam, enum enUnits
*peUnits);

B.3.1 Description
Returns the units of a parameter of type Numeric Value.

B.3.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
peUnits Out Pointer to returned type of units of the parameter

B.3.3 Return Value
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_PARAM_TYPE Error. Parameter is not of type Numeric Value

B.3.4 Example Code
UCHAR Err;
enum enUnits eUnits;
 :
Err = SCPI_ParamUnits (&(sParam[0]), &eUnits);

where sParam[0] is the first parameter returned by SCPI_Parse().

118 JPA-SCPI PARSER – USER MANUAL

B.4 SCPI_ParamToCharDataItem()
UCHAR SCPI_ParamToCharDataItem (struct strParam *psParam, UCHAR
*pItemNum);

B.4.1 Description
Converts a parameter of type Character Data into its Character Data Item Number.

B.4.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
pItemNum Out Pointer to returned parameter's Character Data Item Number.

Item Number is 0 for first item in Character Data Sequence.

B.4.3 Return Values
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_PARAM_TYPE Error. Parameter is not of type Character Data

B.4.4 Example Code
UCHAR Err;
UCHAR ItemNum;
 :
Err = SCPI_ParamToCharDataItem (&(sParam[0]), &ItemNum);
if (Err == SCPI_ERR_NONE)
{
 // ItemNum contains number of item entered
}

where sParam[0] is the first parameter returned by SCPI_Parse().

APPENDIX B – JPA-PARSER ACCESS FUNCTIONS 119

B.5 SCPI_ParamToBOOL()
UCHAR SCPI_ParamToBOOL (struct strParam *psParam, BOOL *pbVal);

B.5.1 Description
Converts a parameter of type Boolean into a BOOL

B.5.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
pbVal Out Pointer to returned BOOL value

B.5.3 Return Value
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_PARAM_TYPE Error. Parameter is not of type Boolean

B.5.4 Example Code
UCHAR Err;
BOOL bVal;
 :
Err = SCPI_ParamToBool (&(sParam[0]), &bVal);

if (Err == SCPI_ERR_NONE)

{

 // bVal contains Boolean value of parameter

}

where sParam[0] is the first parameter returned by SCPI_Parse().

120 JPA-SCPI PARSER – USER MANUAL

B.6 SCPI_ParamToUnsignedInt()
UCHAR SCPI_ParamToUnsignedInt (struct strParam *psParam,
unsigned int *puiVal);

B.6.1 Description
Converts a parameter of type Numeric Value into an unsigned integer. If parameter's value
is negative, then sign is ignored. If parameter's value is real (non-integer) then digits after
the decimal point are ignored.

B.6.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
puiVal Out Pointer to returned unsigned int value

B.6.3 Return Value
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_PARAM_TYPE Error. Parameter is not of type Numeric Value
SCPI_ERR_PARAM_OVERFLOW Error. Value cannot be stored in a variable of type unsigned int

B.6.4 Example Code
UCHAR Err;
unsigned int uiVal;
 :
Err = SCPI_ParamToUnsignedInt (&(sParam[1]), &uiVal);

if (Err == SCPI_ERR_NONE)

{

 // uiVal contains unsigned integer value of parameter

}

where sParam[1] is the second parameter returned by SCPI_Parse().

APPENDIX B – JPA-PARSER ACCESS FUNCTIONS 121

B.7 SCPI_ParamToInt()
UCHAR SCPI_ParamToInt (struct strParam *psParam, int *piVal);

B.7.1 Description
Converts a parameter of type Numeric Value into a signed integer. If parameter's value is
real (non-integer) then digits after the decimal point are ignored.

B.7.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
piVal Out Pointer to returned signed int value

B.7.3 Return Value
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_PARAM_TYPE Error. Parameter is not of type Numeric Value
SCPI_ERR_PARAM_OVERFLOW Error. Value cannot be stored in a variable of type int

B.7.4 Example Code
UCHAR Err;
int iVal;
 :
Err = SCPI_ParamToInt (&(sParam[0]), &iVal);

if (Err == SCPI_ERR_NONE)

{

 // iVal contains integer value of parameter

}

where sParam[0] is the first parameter returned by SCPI_Parse().

122 JPA-SCPI PARSER – USER MANUAL

B.8 SCPI_ParamToUnsignedLong()
UCHAR SCPI_ParamToUnsignedLong (struct strParam *psParam,
unsigned long *pulVal);

B.8.1 Description
Converts a parameter of type Numeric Value into an unsigned long. If parameter's value is
negative, then sign is ignored. If parameter's value is real (non-integer) then digits after the
decimal point are ignored.

B.8.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
pulVal Out Pointer to returned unsigned long value

B.8.3 Return Value
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_PARAM_TYPE Error. Parameter is not of type Numeric Value
SCPI_ERR_PARAM_OVERFLOW Error: Value cannot be stored in a variable of type unsigned

long

B.8.4 Example Code
UCHAR Err;
unsigned long ulVal;
 :
Err = SCPI_ParamToUnsignedLong (&(sParam[1]), &ulVal);

if (Err == SCPI_ERR_NONE)

{

 // ulVal contains unsigned long integer value of parameter

}

where sParam[1] is the second parameter returned by SCPI_Parse().

APPENDIX B – JPA-PARSER ACCESS FUNCTIONS 123

B.9 SCPI_ParamToLong()
UCHAR SCPI_ParamToLong (struct strParam *psParam, long *plVal);

B.9.1 Description
Converts a parameter of type Numeric Value into a signed long. If parameter's value is real
(non-integer) then digits after the decimal point are ignored.

B.9.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
plVal Out Pointer to returned signed long value

B.9.3 Return Value
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_PARAM_TYPE Error. Parameter is not of type Numeric Value
SCPI_ERR_PARAM_OVERFLOW Error. Value cannot be stored in variable of type long

B.9.4 Example Code
UCHAR Err;
long lVal;
 :
Err = SCPI_ParamToLong (&(sParam[0]), &lVal);

if (Err == SCPI_ERR_NONE)

{

 // lVal contains long integer value of parameter

}

where sParam[0] is the first parameter returned by SCPI_Parse().

124 JPA-SCPI PARSER – USER MANUAL

B.10 SCPI_ParamToDouble()
UCHAR SCPI_ParamToDouble (struct strParam *psParam, double
*pfdVal);

B.10.1 Description
Converts a parameter of type Numeric Value into a double-precision float.

B.10.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
pfdVal Out Pointer to returned double value

B.10.3 Return Value
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_PARAM_TYPE Error. Parameter is not of type Numeric Value

B.10.4 Example Code
UCHAR Err;
double fdVal;
 :
Err = SCPI_ParamToDouble (&(sParam[0]), &fdVal);

if (Err == SCPI_ERR_NONE)

{

 // fdVal contains double-precision floating-point
 // value of parameter

}

where sParam[0] is the first parameter returned by SCPI_Parse().

APPENDIX B – JPA-PARSER ACCESS FUNCTIONS 125

B.11 SCPI_ParamToString()
UCHAR SCPI_ParamToString (struct strParam *psParam, char
**pSString, SCPI_CHAR_IDX *pLen, char *pDelimiter);

B.11.1 Description
Converts a parameter of type String, Unquoted String, Expression, Numeric List or Channel
List into a pointer to a string of characters, and a character count.

B.11.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
pSString Out Returned pointer to an array of characters containing the

returned string. Note: The array of characters pointed to is
always within the command line string that contained the
command parameter; the command line string must therefore
still be valid when calling this function.

pLen Out Pointer to number of characters within returned string
pDelimiter Out Pointer to character containing the symbol used to delimit the

string. Only applies to parameter of type String (quoted).

B.11.3 Return Values
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_PARAM_TYPE Error. Parameter was not type String, Unquoted String or

Expression.

B.11.4 Example Code
char *SString;
UCHAR Err;
SCPI_CHAR_IDX Len;
char Delimiter;
char MyString[256];
 :
 Err = SCPI_ParamToString (&(sParams[0]), &SString, &Len,
 &Delimiter);
if (Err == SCPI_ERR_NONE)
{
 strncpy (MyString, SString, Len); // Copy into MyString
 MyString[Len] = ‘\0’; // Null terminate MyString
}

where sParam[0] is the first parameter returned by SCPI_Parse().

126 JPA-SCPI PARSER – USER MANUAL

B.12 SCPI_GetNumListEntry()
This function is only implemented if SUPPORT_NUM_LIST is #defined

UCHAR SCPI_GetNumListEntry (struct strParam *psParam, UCHAR
Index, BOOL *pbRange, struct strParam *psFirst, struct
strParam *psLast);

B.12.1 Description
Returns an entry from a Numeric List parameter in the form of one or two (if it is a range)
numeric value parameters. The numeric value parameters returned can be converted into C
variables using other Access Functions – SCPI_ParamToDouble(),
SCPI_ParamToUnsignedInt(), etc.

B.12.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
pbRange Out Pointer to returned flag: TRUE means entry is a range of

values; FALSE means entry is a single value.
psFirst Out Pointer to returned parameter containing entry's value (or first

value in range if *pbRange==TRUE).
psLast Out Pointer to returned parameter containing entry's last value in

range - only used if *pbRange==TRUE.

B.12.3 Return Values
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_NO_ENTRY Error. There was no entry to get - the index was beyond the

end of the entries.
SCPI_ERR_PARAM_TYPE Error. Parameter is not of type Numeric List

B.12.4 Example Code
 UCHAR Err;
 BOOL bRange;
 struct strParam sFirst, sLast;
 :
 Err = SCPI_GetNumListEntry (&(sParams[1]), 0, &bRange,
 &sFirst, &sLast);

where sParam[1] is the second parameter returned by SCPI_Parse().

APPENDIX B – JPA-PARSER ACCESS FUNCTIONS 127

B.13 SCPI_GetChanListEntry()
This function is only implemented if SUPPORT_CHAN_LIST is #defined

UCHAR SCPI_GetChanListEntry (struct strParam *psParam, UCHAR
Index, UCHAR *pDims, BOOL *pbRange, struct strParam sFirst[],
struct strParam sLast[]);

B.13.1 Description
Returns an entry from a Channel List parameter in the form of one or two (if it is a range)
arrays of numeric value parameters. The numeric value parameters returned can be
converted into C variables using the other Access Functions – SCPI_ParamToDouble(),
SCPI_ParamToUnsignedInt(), etc.

B.13.2 Parameters
Parameter In/Out-Bound? Description
psParam In Pointer to parameter returned by SCPI_Parse() (must not

be null)
pbRange Out Pointer to returned flag: TRUE means entry is a range of

values; FALSE means entry is a single value.
pDims In/Out Inwards: Pointer to maximum dimensions possible in an entry;

returned as the number of dimensions in the entry.
sFirst[] Out Array [0..*pDims-1] of returned parameters containing the

entry's value (or its first value in the range if *pbRange ==
TRUE)

sLast[] Out Array [0..Dims-1] of returned parameters containing entry's
last value in range - only used if *pbRange == TRUE

B.13.3 Return Values
Value Meaning
SCPI_ERR_NONE OK
SCPI_ERR_NO_ENTRY Error. There was no entry to get - the index was beyond the

end of the entries.
SCPI_ERR_TOO_MANY_DIMS Error. Too many dimensions in the entry to be returned in the

parameters.
SCPI_ERR_PARAM_TYPE Error. Parameter is not of type Channel List

B.13.4 Example Code
 UCHAR Err = SCPI_ERR_NONE;

 UCHAR Index = 0;

 UCHAR DimCnt = MAX_DIMS;

 UCHAR Dim;

 BOOL bRange;

 struct strParam sFirst[MAX_DIMS], sLast[MAX_DIMS];

 Err = SCPI_GetChanListEntry (&(sParams[0]), Index, &DimCnt,
 &bRange, sFirst, sLast);

where sParam[0] is the first parameter returned by SCPI_Parse().

128 JPA-SCPI PARSER – USER MANUAL

 – SCPI INSTRUMENT CLASS TEMPLATES 129

Appendix C – SCPI Instrument Class
Templates

This appendix lists the commands supported by each of the supplied SCPI Instrument Class
templates. For more information see ”6.1 SCPI Instrument Classes Introduced”. For
information on each command, refer to the SCPI Standard.

Note:
As well as the commands listed in this appendix, every instrument class template
also includes the commands of the SCPI Base Class template.

APPENDIX C

C.1 DC Voltmeter
Template Location: \code\{format}\template\dcvmet

C.1.1 Command Set
ABORt

CONFigure
[:SCALar]:VOLTage:DC [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

CONFigure?

FETCh
[:SCALar]:VOLTage:DC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

INITiate
[:IMMediate][:ALL]

MEASure
[:SCALar]:VOLTage:DC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

READ
[:SCALar]:VOLTage:DC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

SENSe
:FUNCtion[:ON] {“VOLTage:DC”}
:FUNCtion[:ON]?
:VOLTage:DC:RANGe[:UPPer] {<range>|MIN|MAX}
:VOLTage:DC:RANGe[:UPPer]?
:VOLTage:DC:RANGe:AUTO {ON|OFF}
:VOLTage:DC:RANGe:AUTO?
:VOLTage:DC:RESolution {<resolution>|MIN|MAX}
:VOLTage:DC:RESolution?

TRIGger
[:SEQuence]:COUNt {<value>|MIN|MAX}
[:SEQuence]:COUNt?
[:SEQuence]:DELay {<period>|MIN|MAX}
[:SEQuence]:DELay?
[:SEQuence]:SOURce {BUS|IMMediate|EXTernal}
[:SEQuence]:SOURce?

*TRG

SYSTem
:CAPability?

Notes
1. <range> and <resolution> are numeric values with units defined as Volts.
2. <value> is a numeric value with no units.
3. <period> is a numeric value with units defined as seconds.
4. You may wish to make the SENSe subsystem the default node. Do this by enclosing it in square

brackets in the command specification’s command keywords, i.e. [SENSe:].
5. You may wish to make all occurrences of :VOLTage:DC optional keywords if your instrument

only supports DC voltage measurements. Do this by enclosing it in square brackets in the
command spec’s command keywords, i.e. [:VOLTage:DC]

130 JPA-SCPI PARSER – USER MANUAL

C.2 AC RMS Voltmeter
Template Location: \code\{format}\template\acvmet

C.2.1 Command Set
ABORt

CONFigure
[:SCALar]:VOLTage:AC [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

CONFigure?

FETCh
[:SCALar]:VOLTage:AC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

INITiate
[:IMMediate][:ALL]

MEASure
[:SCALar]:VOLTage:AC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

READ
[:SCALar]:VOLTage:AC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

SENSe
:FUNCtion[:ON] {“VOLTage:AC”}
:FUNCtion[:ON]?
:VOLTage:AC:RANGe[:UPPer] {<range>|MIN|MAX}
:VOLTage:AC:RANGe[:UPPer]?
:VOLTage:AC:RANGe:AUTO {ON|OFF}
:VOLTage:AC:RANGe:AUTO?
:VOLTage:AC:RESolution {<resolution>|MIN|MAX}
:VOLTage:AC:RESolution?

TRIGger
[:SEQuence]:COUNt {<value>|MIN|MAX}
[:SEQuence]:COUNt?
[:SEQuence]:DELay {<period>|MIN|MAX}
[:SEQuence]:DELay?
[:SEQuence]:SOURce {BUS|IMMediate|EXTernal}
[:SEQuence]:SOURce?

*TRG

SYSTem
:CAPability?

Notes
1. <range> and <resolution> are numeric values with units defined as Volts.
2. <value> is a numeric value with no units.
3. <period> is a numeric value with units defined as seconds.
4. You may wish to make the SENSe subsystem the default node. Do this by enclosing it in square

brackets in the command specification’s command keywords, i.e. [SENSe:].
5. You may wish to make all occurrences of :VOLTage:AC optional keywords if your instrument

only supports AC voltage measurements. Do this by enclosing it in square brackets in the
command specification’s command keywords, i.e. [:VOLTage:AC]

APPENDIX C – SCPI INSTRUMENT CLASS TEMPLATES 131

C.3 DC Ammeter
Template Location: \code\{format}\template\dcimet

C.3.1 Command Set
ABORt

CONFigure
[:SCALar]:CURRent:DC [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

CONFigure?

FETCh
[:SCALar]:CURRent:DC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

INITiate
[:IMMediate][:ALL]

MEASure
[:SCALar]:CURRent:DC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

READ
[:SCALar]:CURRent:DC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

SENSe
:FUNCtion[:ON] {“CURRent:DC”}
:FUNCtion[:ON]?
:CURRent:DC:RANGe[:UPPer] {<range>|MIN|MAX}
:CURRent:DC:RANGe[:UPPer]?
:CURRent:DC:RANGe:AUTO {ON|OFF}
:CURRent:DC:RANGe:AUTO?
:CURRent:DC:RESolution {<resolution>|MIN|MAX}
:CURRent:DC:RESolution?

TRIGger
[:SEQuence]:COUNt {<value>|MIN|MAX}
[:SEQuence]:COUNt?
[:SEQuence]:DELay {<period>|MIN|MAX}
[:SEQuence]:DELay?
[:SEQuence]:SOURce {BUS|IMMediate|EXTernal}
[:SEQuence]:SOURce?

*TRG

SYSTem
:CAPability?

Notes
1. <range> and <resolution> are numeric values with units defined as Amps.
2. <value> is a numeric value with no units.
3. <period> is a numeric value with units defined as seconds.
4. You may wish to make the SENSe subsystem the default node. Do this by enclosing it in square

brackets in the command specification’s command keywords, i.e. [SENSe:].
5. You may wish to make all occurrences of :CURRent:DC optional keywords if your instrument

only supports DC current measurements. Do this by enclosing it in square brackets in the
command specification’s command keywords, i.e. [:CURRent:DC]

132 JPA-SCPI PARSER – USER MANUAL

C.4 AC RMS Ammeter
Template Location: \code\{format}\template\acimet

C.4.1 Command Set
ABORt

CONFigure
[:SCALar]:CURRent:AC [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

CONFigure?

FETCh
[:SCALar]:CURRent:AC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

INITiate
[:IMMediate][:ALL]

MEASure
[:SCALar]:CURRent:AC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

READ
[:SCALar]:CURRent:AC? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

SENSe
:FUNCtion[:ON] {“CURRent:AC”}
:FUNCtion[:ON]?
:CURRent:AC:RANGe[:UPPer] {<range>|MIN|MAX}
:CURRent:AC:RANGe[:UPPer]?
:CURRent:AC:RANGe:AUTO {ON|OFF}
:CURRent:AC:RANGe:AUTO?
:CURRent:AC:RESolution {<resolution>|MIN|MAX}
:CURRent:AC:RESolution?

TRIGger
[:SEQuence]:COUNt {<value>|MIN|MAX}
[:SEQuence]:COUNt?
[:SEQuence]:DELay {<period>|MIN|MAX}
[:SEQuence]:DELay?
[:SEQuence]:SOURce {BUS|IMMediate|EXTernal}
[:SEQuence]:SOURce?

*TRG

SYSTem
:CAPability?

Notes
1. <range> and <resolution> are numeric values with units defined as Amps.
2. <value> is a numeric value with no units.
3. <period> is a numeric value with units defined as seconds.
4. You may wish to make the SENSe subsystem the default node. Do this by enclosing it in square

brackets in the command specification’s command keywords, i.e. [SENSe:].
5. You may wish to make all occurrences of :CURRent:AC optional keywords if your instrument

only supports AC current measurements. Do this by enclosing it in square brackets in the
command specification’s command keywords, i.e. [:CURRent:AC]

APPENDIX C – SCPI INSTRUMENT CLASS TEMPLATES 133

C.5 Ohmmeter
Template Location: \code\{format}\template\ohmmet

C.5.1 Command Set
ABORt

CONFigure
[:SCALar]:RESistance [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

CONFigure?

FETCh
[:SCALar]:RESistance? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

INITiate
[:IMMediate][:ALL]

MEASure
[:SCALar]:RESistance? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

READ
[:SCALar]:RESistance? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

SENSe
:FUNCtion[:ON] {“RESistance”}
:FUNCtion[:ON]?
:RESistance:RANGe[:UPPer] {<range>|MIN|MAX}
:RESistance:RANGe[:UPPer]?
:RESistance:RANGe:AUTO {ON|OFF}
:RESistance:RANGe:AUTO?
:RESistance:RESolution {<resolution>|MIN|MAX}
:RESistance:RESolution?

TRIGger
[:SEQuence]:COUNt {<value>|MIN|MAX}
[:SEQuence]:COUNt?
[:SEQuence]:DELay {<period>|MIN|MAX}
[:SEQuence]:DELay?
[:SEQuence]:SOURce {BUS|IMMediate|EXTernal}
[:SEQuence]:SOURce?

*TRG

SYSTem
:CAPability?

Notes
1. <range> and <resolution> are numeric values with units defined as Ohms.
2. <value> is a numericl value with no units.
3. <period> is a numeric value with units defined as seconds.
4. You may wish to make the SENSe subsystem the default node. Do this by enclosing it in square

brackets in the command specification’s command keywords, i.e. [SENSe:].
5. You may wish to make all occurrences of :RESistance an optional keyword if your instrument

only supports 2-wire resistance measurements. Do this by enclosing it in square brackets in the
command specification’s command keywords, i.e. [:RESistance]

134 JPA-SCPI PARSER – USER MANUAL

C.6 4-wire Ohmmeter
Template Location: \code\{format}\template\4wohmmet

C.6.1 Command Set
ABORt

CONFigure
[:SCALar]:FRESistance [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

CONFigure?

FETCh
[:SCALar]:FRESistance? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

INITiate
[:IMMediate][:ALL]

MEASure
[:SCALar]:FRESistance? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

READ
[:SCALar]:FRESistance? [<range>|MIN|MAX [,<resolution>|MIN|MAX]]

SENSe
:FUNCtion[:ON] {“FRESistance”}
:FUNCtion[:ON]?
:FRESistance:RANGe[:UPPer] {<range>|MIN|MAX}
:FRESistance:RANGe[:UPPer]?
:FRESistance:RANGe:AUTO {ON|OFF}
:FRESistance:RANGe:AUTO?
:FRESistance:RESolution {<resolution>|MIN|MAX}
:FRESistance:RESolution?

TRIGger
[:SEQuence]:COUNt {<value>|MIN|MAX}
[:SEQuence]:COUNt?
[:SEQuence]:DELay {<period>|MIN|MAX}
[:SEQuence]:DELay?
[:SEQuence]:SOURce {BUS|IMMediate|EXTernal}
[:SEQuence]:SOURce?

*TRG

SYSTem
:CAPability?

Notes
1. <range> and <resolution> are numeric values with units defined as Ohms.
2. <value> is a numeric value with no units.
3. <period> is a numeric value with units defined as seconds.
4. You may wish to make the SENSe subsystem the default node. Do this by enclosing it in square

brackets in the command specification’s command keywords, i.e. [SENSe:].
5. You may wish to make all occurrences of :FRESistance an optional keyword if your instrument

only supports 4-wire resistance measurements. Do this by enclosing it in square brackets in the
command specification’s command keywords, i.e. [:FRESistance]

APPENDIX C – SCPI INSTRUMENT CLASS TEMPLATES 135

C.7 Power Supply
Template Location: \code\{format}\template\powersup

C.7.1 Command Set
OUTPut
[:STATe] {ON|OFF}

[SOURce:]
CURRent[:LEVel][:IMMediate][:AMPLitude] {<current>|MIN|MAX}
VOLTage[:LEVel][:IMMediate][:AMPLitude] {<voltage>|MIN|MAX}

SYSTem
:CAPability?

Notes
1. <current> is a numeric value with units defined as Amps.
2. <voltage> is a numeric value with units defined as Volts.

136 JPA-SCPI PARSER – USER MANUAL

C.8 Digitizer
Template Location: \code\{format}\template\digitizr

C.8.1 Command Set
INPut#
:COUPling {AC|DC|GND}
:COUPling?

[SENSe:]
VOLTage#[:DC]:RANGe:LOWer {<voltage>|MIN|MAX}
VOLTage#[:DC]:RANGe:LOWer?
VOLTage#[:DC]:RANGe:OFFSet {<voltage>|MIN|MAX}
VOLTage#[:DC]:RANGe:OFFSet?
VOLTage#[:DC]:RANGe:PTPeak {<voltage>|MIN|MAX}
VOLTage#[:DC]:RANGe:PTPeak?
VOLTage#[:DC]:RANGe[:UPPER] {<voltage>|MIN|MAX}
VOLTage#[:DC]:RANGe[:UPPER]?
SWEep:POINts {<number>|MIN|MAX}
SWEep:POINts?
SWEep:TIME {<period>|MIN|MAX}
SWEep:TIME?
SWEep:TINTerval {<period>|MIN|MAX}
SWEep:TINTerval?
DATA? [“XTIMe:VOLTage#[:DC]”]
FUNCtion:CONCurrent {ON|OFF}
FUNCtion:CONCurrent?
FUNCtion:OFF {“XTIMe:VOLTage#[:DC]”}
FUNCtion:OFF?
FUNCtion[:ON] {“XTIMe:VOLTage#[:DC]”}
FUNCtion[:ON]?
FUNCtion:STATe {“XTIMe:VOLTage#[:DC]”}
FUNCtion:STATe?

FORMat
[:DATA] {ASCii}[,<length>]
[:DATA]?

INITiate
[:IMMediate][:ALL]

ABORt

TRIGger
[:SEQuence]:COUPling {AC|DC}
[:SEQuence]:COUPling?
[:SEQuence]:LEVel {<voltage>|MIN|MAX}
[:SEQuence]:LEVel?
[:SEQuence]:SLOPe {POSitive|NEGative|EITHer}
[:SEQuence]:SLOPe?
[:SEQuence]:SOURce {INTernal#}
[:SEQuence]:SOURce?

APPENDIX C – SCPI INSTRUMENT CLASS TEMPLATES 137

SYSTem
:CAPability?

Notes
1. <voltage> is a numeric value with units defined as Volts.
2. <period> is a numeric value with units defined as seconds.
3. <number> and <length> are numeric values without units.

138 JPA-SCPI PARSER – USER MANUAL

C.9 Signal Switcher
Template Location: \code\{format}\template\switcher

C.9.1 Command Set
[ROUTe:]
CLOSe <channel list>
CLOSe? <channel list>
CLOSe:STATe?
OPEN <channel list>
OPEN? <channel list>
OPEN:ALL

SYSTem
:CAPability?

Notes
1. <channel list> is a Channel List parameter that uses the sCL1DimInts channel list type defined

in cmds.c, thus allowing entry of a single dimensional channel list of integer values. If this is
unsuitable then select another channel list type or define your own.

APPENDIX C – SCPI INSTRUMENT CLASS TEMPLATES 139

C.10 RF and Microwave Source
Template Location: \code\{format}\template\rfmicsrc

C.10.1 Command Set
[SOURce:]
FREQuency[:CW] {<frequency>|MIN|MAX}
FREQuecny[:CW]?
FREQuency:FIXed {<frequency>|MIN|MAX}
FREQuency:FIXed?
POWer:ALC[:STATe] {ON|OFF}
POWer:ALC[:STATe]?
POWer[:LEVel][:IMMediate][:AMPLitude] {<power>|MIN|MAX}
POWer[:LEVel][:IMMediate][:AMPLitude]?

OUTPut
[:STATe] {ON|OFF}
[:STATe]?

UNIT
:POWer {W|V|DBNW|DBUW|DBM|DBMW|DBW}

SYSTem
:CAPability?

Notes
1. <frequency> is a numeric value with units defined as Hertz.

2. The UNIT:POWer command allows the user to specify the default units when sending a
command with the <power> parameter. Add any other units supported to the options list.

3. <power> is a numeric value with no default units, but accepting units of Watts, Volts and Decibel
Watts.

If <power> is entered with no units, your code should assume the units as specified by the most
recent UNIT:POWer command. Initially, the default units are DBM, as specified in the SCPI
Standard (in section describing the RF and Microwave Source Instrument Class.)

140 JPA-SCPI PARSER – USER MANUAL

C.11 SCPI Base Class
Template Location: \code\{format}\templates\base

The SCPI Base Class template includes the set of commands that must be supported by
every instrument in order to claim SCPI-compliance.
Note: All the commands in the SCPI Base Class template are also included in every SCPI
Instrument Class template.

C.11.1 Command Set
SYSTem
:ERRor[:NEXT]?
:VERSion?

STATus
:OPERation[:EVENt]?
:OPERation:CONDition?
:OPERation:ENABle <value>
:OPERation:ENABle?
:QUEStionable[:EVENt]?
:QUEStionable:CONDition?
:QUEStionable:ENABle <value>
:QUEStionable:ENABle?
:PRESet

*CLS

*ESE <enable value>
*ESE?

*ESR?

*IDN?

*OPC

*OPC?

*RST

*SRE <enable value>
*SRE?

*STB?

*TST?

*WAI

Notes
1. <value> and <enable value> are both numeric values without units.

APPENDIX C – SCPI INSTRUMENT CLASS TEMPLATES 141

 – SAMPLE COMMAND SPECIFICATIONS 143

Appendix D – Sample Command Specifications
It is often useful to examine examples of source code that implement command
specifications similar to your requirements for your instrument.
The JPA-SCPI Parser Demo Application (available from the JPA Consulting website:
http:\\www.jpacsoft.com) demonstrates a variety of types of command specifications.
The cmds.c and cmds.h files used by the Demo Application (version 1.2) are supplied with
JPA-SCPI Parser. They are located in folder: \code\{format}\sample
Here is the list of command specifications implemented by the cmds.c and cmds.h files of
the Demo Application. Take a look through the command specifications here for one similar
to your requirements, e.g. it has a similar type of parameter or uses default keywords in a
similar way. Now open the cmds.c file used by the Demo Application to see how that
command specification is implemented in code.

Note, to save space, some standard character data choices are only listed here in short
form. For example, MIN|MAX|DEF actually means that the choices are
MINimum|MAXimum|DEFault.

Cmd # Command Specification
 IEEE488.2 Commands required for SCPI Compliancy
0 *CLS
1 *ESE <enable value (no units)>
2 *ESE?
3 *ESR?
4 *IDN?
5 *OPC
6 *OPC?
7 *RST
8 *SRE <enable value (no units)>
9 *SRE?

10 *STB?
11 *TST?
12 *WAI
 Other Commands required for SCPI Compliancy

13 SYSTem:ERRor[:NEXT]?
14 SYSTem:VERSion?
15 STATus:OPERation[:EVENt]?
16 STATus:OPERation:CONDition?
17 STATus:OPERation:ENABle <value>
18 STATus:OPERation:ENABle?
19 STATus:QUEStionable[:EVENt]?
20 STATus:QUEStionable:CONDition?
21 STATus:QUEStionable:ENABle <value>
22 STATus:QUEStionable:ENABle?
23 STATus:PRESet
 Example Commands used by a DMM

24 MEASure:VOLTage:DC? {<range (V)>|MIN|MAX|DEF}, {<resolution (V)>|MIN|MAX|DEF}
25 MEASure:VOLTage:DC:RATio? {<range (V)>|MIN|MAX|DEF}, {<resolution (V)>|MIN|MAX|DEF}
26 MEASure:VOLTage:AC? {<range (V)>|MIN|MAX|DEF}, {<resolution (V)>|MIN|MAX|DEF}
27 MEASure:CURRent:DC? {<range (A)>|MIN|MAX|DEF}, {<resolution (A)>|MIN|MAX|DEF}
28 MEASure:CURRent:AC? {<range (A)>|MIN|MAX|DEF}, {<resolution (A)>|MIN|MAX|DEF}
29 MEASure:RESistance? {<range (Ω)>|MIN|MAX|DEF}, {<resolution (Ω)>|MIN|MAX|DEF}
30 MEASure:FRESistance? {<range (Ω)>|MIN|MAX|DEF}, {<resolution (Ω)>|MIN|MAX|DEF}
31 MEASure:FREQuency? {<range (Hz)>|MIN|MAX|DEF}, {<resolution (Hz)>|MIN|MAX|DEF}

APPENDIX D

Cmd # Command Specification
32 MEASure:PERiod? {<range (s)>|MIN|MAX|DEF}, {<resolution (s)>|MIN|MAX|DEF}

33 CONFigure:CURRent:DC {<range (A)>|MINimum|MAXimum|DEFault}
34 CONFigure:FREQuency {<range (Hz)>|MINimum|MAXimum|DEFault}

35 [SENSe:]RESistance:RANGe {<range (Ω)>|MINimum|MAXimum}
36 [SENSe:]RESistance:RANGe? [MINimum|MAXimum]
37 [SENSe:]RESistance:RANGe:AUTO {OFF|ON}
38 [SENSe:]VOLTage:DC:NPLCycles {0.02|0.2|1|10|100|MINimum|MAXimum}
39 [SENSe:]FUNCtion

 {"VOLTage:DC"|"VOLTage:DC:RATio"|"VOLTage:AC"|"CURRent:DC"|"CURRent:AC"
 |"RESistance"|"FRESistance"|"FREQuency"|"PERiod"|"CONTinuity"|"DIODe"}

40 [SENSe:]FUNCtion?

41 INPut:IMPedance:AUTO {OFF|ON}
42 INPut:IMPedance:AUTO?

43 CALCulate:STATe {OFF|ON}
44 CALCulate:FUNCtion {NULL|DB|DBM|AVERage|LIMit}
45 CALCulate:AVERage:MINimum?
46 CALCulate:AVERage:MAXimum?

47 READ?

 Example Commands used by a Power Source
48 APPLy {<voltage (V)>|MIN|MAX|DEF}, {<current (A)>|MIN|MAX|DEF}
49 APPLy[:SOURce]:CURRent[:LEVel][:IMMediate][:AMPLitude]

 {<level (A)>|MINimum|MAXimum|UP|DOWN}
50 APPLy[:SOURce]:CURRent[:LEVel][:IMMediate][:AMPLitude]? [MINimum|MAXimum]
51 APPLy[:SOURce]:VOLTage[:LEVel][:IMMediate][:AMPLitude]

 {<level (V)>|MINimum|MAXimum|UP|DOWN}
52 APPLy[:SOURce]:VOLTage[:LEVel][:IMMediate][:AMPLitude]? [MINimum|MAXimum]
53 APPLy[:SOURce]:INDuctance <inductance (µH)>
54 APPLy[:SOURce]:TEMPerature <temperature (°K (default), °C, or °F)>

55 INITiate[:IMMediate]

56 OUTPut:RELay[:STATe] {OFF|ON}
57 OUTPut:RELay[:STATe]?

 Example Commands applicable to many different types of instrument
58 TRIGger:SOURce {BUS|IMMediate|EXTernal}
59 TRIGger:DELay? [MINimum|MAXimum]

60 DISPlay:TEXT <message string>

61 CALibration:SECure:CODE <passcode (unquoted string)>
62 CALibration:SECure:STATe {OFF|ON}, <code (unquoted string)>
63 CALibration:SECure:STATe?
64 CALibration:CURRent[:DATA] <numeric value (no units)>
65 CALibration:CURRent:LEVel {MINimum|MIDdle|MAXimum}

66 SYSTem:LOCal
67 SYSTem:REMote

68 STEP[:INCRement]:AUTO {OFF|ON|ONCE}
 Miscellaneous Examples

69 ROUTe:OPEN <channel list>
70 SYSTem:ERRor:ENABle[:LIST] <numeric list>
71 OUTPut:TTLTrg#
72 OUTPut#:MOD#FM# <numeric value>
73 TRACe:FEED:OCONdition <expression>

144 JPA-SCPI PARSER – USER MANUAL

 – UPGRADING FROM A PREVIOUS VERSION 145

Appendix E – Upgrading from a Previous
Version

The current version of JPA-SCPI Parser is V1.3.1. If you are using a previous version of
JPA-SCPI Parser, it is recommended that you upgrade to this latest version.
Locate the section below related to the version of JPA-SCPI Parser that you are currently
using. Follow the procedure described to upgrade to the next more recent version.

E.1 Upgrading from V1.3.0

E.1.1 Summary of New Features in V1.3.1
This is a maintenance release, hence there are no new features.

E.1.2 Bug Fixes in V1.3.1
• Possible compilation error or erroneous behaviour relating to function

SCPI_ParamToString() if not using the default definition of SCPI_CHAR_INDEX.

Problem
Incorrect definition of parameter pLen in function declaration SCPI_ParamToString().

Fix
Function declaration of SCPI_ParamToString() corrected in scpi.h (see Design Notes
document for more details).

• Unused parameter causing compilation size to be larger than necessary.
Problem
Function TranslateParameters() includes parameter InpParamCnt that is not used or
required.

Fix
Parameter InpParamCnt removed from TranslateParameters() function and calls to
the function.

• Possible compilation error or erroneous behaviour relating to structure strAttrString if
using non-default definition of SCPI_CHAR_INDEX.

Problem
Incorrect definition of element Len in structure strAttrString.

Fix
Definition of element Len in structure strAttrString changed to SCPI_CHAR_INDEX
(was unsigned char) in scpi.h.

E.1.3 Changes to Documentation in V1.3.1
E.1.3.1 User Manual

• Pages 23 & 107 – Corrected address of SCPI Consortium website to be
www.scpiconsortium.org.

APPENDIX E

http://www.scpiconsortium.org/

• Page 92 - Corrected code to be SCPI_ParamToBOOL(). Was SCPI_ParamToBool().

• Page 96 – Explain DimCnt parameter’s inwards requirements when calling the
SCPI_GetChanEntry() function.

E.1.3.2 Design Notes
• Page 34 – Removed entry for parameter InpParamCnt from information table on

function TranslateParameters().

E.1.4 Procedure for Upgrading to V1.3.1
a) Replace your existing files with the new versions of scpi.h and scpi.c.
b) If you have previously made any changes to scpi.h or scpi.c then you will need to

repeat those changes to the new files.

E.2 Upgrading from Older Versions
If you are using an older version than V1.3.0, you will need to perform a two step upgrade –
first upgrading to V1.3.0, and then following the procedure in the previous section to
upgrade to V1.3.1. For instructions of how to upgrade to V1.3.0, please refer to the User
Manual for JPA-SCPI Parser V1.3.0. If you require further information please contact us via
email: support@jpacsoft.com.

E.3 Revision History of Previous Versions
E.3.1 V1.3.0
E.3.1.1 New Features

• Option to allow more than 255 characters in the input command line
• Option to allow more than 255 command definitions
• Enhancement to numeric suffix option. An option to discriminate between a

command entered without a numeric suffix and the same command entered with a
numeric suffix of 1.

E.3.1.2 Bug Fixes
• Possible invalid value returned by function SCPI_ParamToUnsignedLong() in

parameter *pulVal.

Problem
Incorrect casting in function where parameter is assigned.

Fix
This incorrect line:

 *pulVal = (unsigned int)(psParam->unAttr.sNumericVal.ulSigFigs);

is now replaced by this:
 *pulVal = psParam->unAttr.sNumericVal.ulSigFigs;

146 JPA-SCPI PARSER – USER MANUAL

mailto:support@jpacsoft.com

• Error in each instrument class template cmds.c file causing possible compilation
errors.

Problem
Inappropriate closing bracket character at the end of three #ifdef lines.

Fix
Closing bracket characters removed, for instance:

 #ifdef SUPPORT_NUM_LIST)

is now replaced by this:
 #ifdef SUPPORT_NUM_LIST

• Error in a command definition of the Digitizer instrument class template.
Problem
Command TRIGger[:SEQuence]:SLOPe incorrectly accepts EIT as the short form of
valid parameter EITHER, whereas it should be EITH.

Fix
Correction to definition of SeqPosNegEit[] in Digitizer template’s cmds.c.

E.3.2 V1.2.1
E.3.2.1 New Features

• None

E.3.2.2 Bug Fixes
• Rejection of some valid compound SCPI command strings that contain common

commands. Note: non-common commands are parsed correctly.
Problem
Previous versions of the parser reject valid compound command strings that contain
common commands (e.g.*rst, *wai, *cls, etc.) after the first command in the string,
for example:

configure:current:dc max;*cls
This is a valid SCPI string. The parser correctly parses the first command
(configure:current:dc max), but parser function SCPI_Parse() rejects the second
command (*cls), returning SCPI_ERR_INVALID_CMD.
The parser incorrectly considers the command tree reached by the previous
command (configure:current:dc max), and rejects the common command (*cls)
since it is not present within the command tree at that level.
This is incorrect behaviour, since the IEEE488.2 specification states that the level of
the command tree reached should not be considered when a common command is
parsed.
A user workaround is to either (a) send separate commands, i.e.:

configure:current:dc max
*cls

or (b) insert a colon (:) immediately before the common command:

 configure:current:dc max;:*cls

APPENDIX E – UPGRADING FROM A PREVIOUS VERSION 147

The colon returns the command tree to the root and the parser then recognises the
common command (*cls).

Fix
Parser V1.2.1 now correctly parses compound command strings that contain
common commands after the first command in the string.
Note also that the place in the command tree reached before the common command
is maintained for any subsequent command. For instance, this SCPI command string
is valid, and is parsed correctly by the parser:

configure:current:dc max;*cls;dc min

E.3.3 V1.2.0
E.3.3.1 New Features

• New parameter type: Numeric List. Allows entry of a list of numeric values and
numeric ranges. Provides full support for the Numeric List type as defined in the
SCPI Standard.

• New parameter type: Channel List. Allows entry of lists of electrical ports and
ranges of ports. Single and multi-dimensional entries are allowed. Full support for the
Channel List type as defined in the SCPI Standard, with the exception that
alphanumeric entries, such as path names and module identifiers are not supported.
If these are required, then the new parameter type Expression (see below) may be
used.

• New parameter type: Expression. Allows entry of any valid SCPI expression. The
expression is validated for the correct levels of bracketing and returned as a pointer
to a string. Parsing of the returned string is performed by the user’s code.

• Support for Numeric Suffices in both command keywords and character data
items. Allows commands to be defined for multi-channel instruments without the
need for duplicating commands. The numeric suffices entered in the command are
returned as an array of unsigned integers for use by the user’s code.

• Optional Support Features. Using a small set of #define statements, the above
support features can be individually enabled or disabled. By disabling features that
are not needed, you can save ROM and RAM.

• Ability to include optional characters in the specifications of Character Data
items. Character Data item specification can now include optional text within square
brackets ([,]), in the same way that command keywords can.

• Better parsing of quoted strings. Entries can now include embedded quotes of the
same kind as the delimiting quotes by use of 2 adjacent quotes (as defined in SCPI
Standard). The type of quote used to delimit the string is available via a new return
parameter in the SCPI_ParamToString() Access Function.

• Parameters are now validated for the correct use of round brackets ((,)). I.e.
there must be the same number of opening and closing brackets and there must
never be a negative nesting level (where there is a greater number of closing
brackets to the left of any opening brackets). Note, brackets inside quotes (single or
double) are not counted.

• Better support for C++ compilers. The scpi.h and cmds.h header files now include
pre-processor directives to tell a C++ compiler that the functions are C format. This
should allow easier integration of the JPA-SCPI Parser modules into a C++ project.

148 JPA-SCPI PARSER – USER MANUAL

• All references to numerical values in the code and the documentation have
been changed to numeric values. This is in line with the SCPI Standard document.

E.3.3.2 Bug Fixes
• None

In addition, details of the changes and additions made to the source code for this version of
JPA-SCPI Parser are given in the accompanying JPA-SCPI Parser Design Notes document.

APPENDIX E – UPGRADING FROM A PREVIOUS VERSION 149

	Contents
	1 Licence Agreement
	2 Introduction
	2.1 What is JPA-SCPI Parser?
	2.2 The SCPI Standard
	A Note on SCPI Compliance

	2.3 Using JPA-SCPI Parser
	2.4 Aims of JPA-SCPI Parser
	2.5 Contacting Us

	3 What’s Included?
	3.1 Documentation
	3.2 Source Code
	3.3 Important Note – Text Formats
	3.4 Organization of Supplied Files
	3.5 Notes on the Source Code

	4 Overview of JPA-SCPI Parser
	4.1 SCPI Parser
	4.2 Command Specifications

	5 Before You Start
	5.1 SCPI Standard
	IEEE488.2 Standard

	5.2 Where Now?

	6 Choose your SCPI Instrument Class(es)
	6.1 SCPI Instrument Classes Introduced
	DC Voltmeter SCPI Instrument Class
	AC RMS Voltmeter SCPI Instrument Class
	Ohmmeter SCPI Instrument Class
	4-wire Ohmmeter SCPI Instrument Class
	DC Ammeter SCPI Instrument Class
	AC RMS Ammeter SCPI Instrument Class
	Power Supply SCPI Instrument Class
	Digitizer SCPI Instrument Class
	Signal Switcher SCPI Instrument Class
	RF and Microwave Source SCPI Instrument Class

	7 Define Your Command Set
	7.1 Command Notation
	Command Keywords
	Numeric Suffices
	Parameters

	7.2 Base Command Set
	7.3 SCPI Instrument Class Commands
	Using One or More SCPI Instrument Classes with a Template
	Using a SCPI Instrument Class without a Template
	Optional Commands
	Do I Need the Command “SYSTem:CAPability?”

	7.4 Adding Your Own Commands

	8 An Overview of the Required Coding
	8.1 Command Specifications
	8.2 Integrating into Your Own Code

	9 Starting Your Implementation
	9.1 Select Your Templates
	9.2 Using a Single Template
	Copy the Template into your Project Folder
	Customize cmds.c

	9.3 Using Two or More Templates
	Copy one of the Templates into your Project Folder
	Customize cmds.c
	Merge Other Templates into cmds.c

	9.4 Tidying Up
	Remove Unwanted Commands
	Renumber Commands

	10 Specify Maximum Number of Parameters
	10.1 Set Maximum Parameters in cmds.h
	10.2 Modify cmds.c for Maximum Parameters
	NO_PARAMS
	Command Specifications

	11 Specify Supported Units
	11.1 Specify Base Units in cmds.h
	11.2 Specify Supported Units in cmds.c
	Unit String
	Base Units
	Units Multiplier
	Example Entries
	Expanding Ranges of Supported Units

	12 Optional Support Features
	12.1 Introduction to the Optional Support Features
	12.2 Enabling/Disabling the Features You Need
	12.3 Numeric Suffix Support Settings
	Maximum Number of Numeric Suffices
	Range of Allowed Numeric Suffices
	Default Numeric Suffix

	12.4 Channel List Support Settings
	12.5 Option to Support More than 255 Characters in an Input Command Line
	12.6 Option to Support More than 255 Commands

	13 Specify Command Keywords
	13.1 Create a Row in Command Specs – Part 1: Command K
	Command Keywords
	Command Number

	14 Specify Command Parameters
	14.1 Commands without Parameters
	14.2 Commands with Parameters
	14.3 Required and Optional Parameters
	14.4 What Type of Parameter?
	Numeric Value
	Boolean
	Character Data
	String
	Unquoted String
	Numeric List
	Channel List
	Expression
	Character Data with Alternative Parameter Type

	14.5 Specifying Parameter Type in Code
	14.6 Specifying a Numeric Value Parameter
	Defining Numeric Values without Units
	Defining Numeric Value Types
	Defining Numeric Values with Units

	14.7 Specifying a Boolean Parameter
	Default Value
	Completing the Specification

	14.8 Specifying a Character Data Parameter
	Defining Character Data Sequences
	Defining Character Data Types
	Completing the Specification of a Character Data Parameter

	14.9 Specifying a String Parameter
	14.10 Specifying an Unquoted String Parameter
	14.11 Specifying a Numeric List Parameter
	Defining a Numeric List Type
	Completing the Specification of a Numeric List Parameter

	14.12 Specifying a Channel List Parameter
	Defining a Channel List Type
	Completing the Specification of a Channel List Parameter

	14.13 Specifying an Expression Parameter
	14.14 Specifying a Character Data Parameter with an Alternative Parameter Type
	Alternative Parameter Type
	Completing the Specification of a Character Data Parameter with an Alternative Parameter Type

	15 Remove Unused Declarations
	16 Integrate into Your Source Code
	16.1 Compiler Requirements
	16.2 Integration Overview
	16.3 Copy Command Line from Input Buffer
	16.4 Parsing Loop
	When SUPPORT_NUM_SUFFIX is #defined
	When SUPPORT_NUM_SUFFIX is not #defined
	Variables
	Parsing the Command Line

	16.5 Command Handler Functions
	Numeric Suffices
	Parameter Types
	Converting Parameters to C Variables
	Validate Parameters
	Act on Command

	17 Advanced Topics
	17.1 How can I Support Nested Optional Parameters?
	17.2 How do I Support the UNIT Subsystem?
	Specify the UNIT Commands Supported
	Create Alternative Units
	Create a Numeric Value Type for Unit Choices
	Specifying Command Parameters
	Implementation Requirements

	17.3 How can I allow entry of either a Numeric Value or an Expression Parameter?
	17.4 Commands that allow Many Parameters
	Extra Memory Usage
	Readability

	Appendix A – An Introduction to SCPI
	A.1 Benefits of SCPI
	A.2 Background to SCPI
	A.3 Command Structure
	Long and Short Form Keywords
	Query Commands
	Default Keywords
	Numeric Suffices
	Compound Commands
	IEEE488.2 Common Commands
	Parameters
	Types of Parameter

	Appendix B – JPA-Parser Access Functions
	B.1 SCPI_Parse()
	Description
	Parameters
	Return Value
	Example Code (SUPPORT_NUM_SUFFIX is not #defined)

	B.2 SCPI_ParamType()
	Description
	Parameters
	Return Value
	Example Code

	B.3 SCPI_ParamUnits()
	Description
	Parameters
	Return Value
	Example Code

	B.4 SCPI_ParamToCharDataItem()
	Description
	Parameters
	Return Values
	Example Code

	B.5 SCPI_ParamToBOOL()
	Description
	Parameters
	Return Value
	Example Code

	B.6 SCPI_ParamToUnsignedInt()
	Description
	Parameters
	Return Value
	Example Code

	B.7 SCPI_ParamToInt()
	Description
	Parameters
	Return Value
	Example Code

	B.8 SCPI_ParamToUnsignedLong()
	Description
	Parameters
	Return Value
	Example Code

	B.9 SCPI_ParamToLong()
	Description
	Parameters
	Return Value
	Example Code

	B.10 SCPI_ParamToDouble()
	Description
	Parameters
	Return Value
	Example Code

	B.11 SCPI_ParamToString()
	Description
	Parameters
	Return Values
	Example Code

	B.12 SCPI_GetNumListEntry()
	Description
	Parameters
	Return Values
	Example Code

	B.13 SCPI_GetChanListEntry()
	Description
	Parameters
	Return Values
	Example Code

	Appendix C – SCPI Instrument Class Templates
	C.1 DC Voltmeter
	Command Set

	C.2 AC RMS Voltmeter
	Command Set

	C.3 DC Ammeter
	Command Set

	C.4 AC RMS Ammeter
	Command Set

	C.5 Ohmmeter
	Command Set

	C.6 4-wire Ohmmeter
	Command Set

	C.7 Power Supply
	Command Set

	C.8 Digitizer
	Command Set

	C.9 Signal Switcher
	Command Set

	C.10 RF and Microwave Source
	Command Set

	C.11 SCPI Base Class
	Command Set

	Appendix D – Sample Command Specifications
	Appendix E – Upgrading from a Previous Version
	E.1 Upgrading from V1.3.0
	Summary of New Features in V1.3.1
	Bug Fixes in V1.3.1
	Changes to Documentation in V1.3.1
	Procedure for Upgrading to V1.3.1

	E.2 Upgrading from Older Versions
	E.3 Revision History of Previous Versions
	V1.3.0
	V1.2.1
	V1.2.0

